Categories
BIM

ISO 19650: ¿Cómo interpretar la parte 1 y 2?

¡Complementa tus conocimientos de modelado BIM con la norma ISO 19650! Con la norma aprenderás a gestionar la información de tus proyectos BIM de forma colaborativa y eficiente. Descubre cómo interpretarla y aprovechar al máximo este estándar internacional en gestión de información bajo modelos BIM.


Introducción 

En el presente artículo, se muestra una introducción a la norma ISO 19650-1 y 19650-2, abordando la parte 1 relacionada a sus conceptos y principios, así como su aplicación en la gestión de información en proyectos de construcción. Se describen también elementos como el modelo de información, los agentes del proceso, los requisitos de información, el plan de ejecución BIM y el entorno común de datos (CDE). Así como la parte 2 de la norma, explorando la fase de desarrollo de los activos.

Generalidades de la ISO 19650

En nuestro artículo anterior “Una visión general de la ISO 19650” exploramos un resumen de los 6 estándares que componen esta ISO, sus beneficios y el contexto de países que ya la adoptaron. En esta ocasión, echaremos un vistazo a sus dos primeras partes: Conceptos y principios (Parte 1) y Fase de desarrollo de los activos (Parte 2).

Figura 1. Blog “Una visión general de la ISO 19650” de Konstruedu.

 Fuente: Konstruedu.com

¿Entonces qué es la ISO 19650?

Corresponde a una serie de normas internacionales que definen cómo gestionar efectivamente la información de manera colaborativa, abordando todo el ciclo de vida de un activo construido empleando la metodología BIM. Esta ISO contempla 6 partes, de las cuales 5 ya han sido publicadas y traducidas a nuestro ideas, mientras que la última sobre salud y seguridad aún está en producción

¿Por qué gestionar la información?

Gestionar la información implica organizar, almacenar y compartir datos de manera efectiva para facilitar la toma de decisiones y el cumplimiento de las metas. Por eso, el objetivo de esta norma es poder garantizar que las personas correctas trabajen con la información adecuada en el momento oportuno. Esto garantiza la entrega de proyectos de entornos construidos a tiempo, dentro del presupuesto y cumpliendo con los estándares establecidos.

ISO 19650-1: Conceptos y principios

En esta primera parte se aborda una introducción a los conceptos relacionados a la gestión de información como los modelos, agentes y requisitos. Así mismo, sirve como base para las demás partes de la ISO; definiendo, por ejemplo, el plan de ejecución BIM y el entorno común de datos (CDE).

A continuación se mostrarán interpretaciones de algunos conceptos que permitirán entrar en contexto con la gestión de información que busca la norma.

Modelo de información 

Corresponde a agrupar conjuntos de información que se encuentran dentro de un archivo o sistema de almacenamiento. Es decir, estos modelos engloban a las propiedades geométricas, temporales o físicas del activo a construir. Normalmente, se recomienda que estén clasificados en uno o más sistemas de clasificación como Omniclass o Uniclass, del cual ya hemos hablado en blogs anteriores. Un ejemplo clásico es nuestro modelo de Revit, que contiene las principales características del proyecto en el que estamos trabajando.

En edificaciones solemos agrupar esta información por diferentes disciplinas: estructuras, arquitectura e instalaciones; de forma que sea más fácil su coordinación y revisión más adelante. Además de que, esta información puede ser usada no solo en el desarrollo del proyecto sino también en la etapa de operación y mantenimiento. Debido a esto, existen dos tipos de modelos de información:

  • PIM (Project Information Model o “Modelo de Información del proyecto”): Proporciona toda la información necesaria para llevar a cabo la fase de entrega de un activo (diseño y c. Los ejemplos incluyen modelos 3D, bases de datos, hojas de cálculo o documentación. 
  • AIM (Asset Information Model o “Modelo de Información del activo”): Proporciona toda la información necesaria para realizar la fase de operación del activo. Además, puede incluir modelos gráficos, datos no gráficos y toda la documentación necesaria para el mantenimiento, operación y gestión continua del activo.

Figura 1. Etapas en la construcción y modelos de información.

Fuente: Semcocad. Elaboración: Propia.

Agentes del proceso

La ISO también aborda los roles de las personas que intervienen en el activo de construcción, las que se dividen en tres: “La parte que designa”, “La parte principal designada” y “La parte designada”. Estos nombres se deben a la traducción de su versión en inglés:  “Appointing Party”, “Lead Appointed Party” y “Appointed Parties”, por lo que nos referiremos a ellos como “cliente”, “consultoría” y “especialistas”. En el caso de obras de edificaciones podemos relacionar a estos roles con los siguientes:

Figura 2. Relaciones entre los diferentes agentes según la ISO 19650.

Nota: Se deduce que el cliente será quien defina los requisitos (designa) y recibe la información de la consultoría (entrega), los que a su vez reciben los entregables del proyecto por parte de cada especialista. Fuente: 12dsynergy.com. Elaboración: Propia.

Requisitos de información

Representan un conjunto de especificaciones sobre: la información que debe producirse, cuándo debe producirse, su método de producción y su destinatario. Estos requisitos son definidos por el “cliente” pero todos los demás agentes también toman responsabilidad en su definición.

De acuerdo con la ISO 19650, estos requisitos pueden ser de 4 tipos:

  • Requisitos de Información de la Organización (OIR):  Definen la información necesaria para cumplir con los objetivos comerciales estratégicos del “cliente”. Además, son el punto de partida para definir los demás requisitos.
  • Requisitos de Información del Proyecto (PIR): Definen la información necesaria cuando el “cliente” toma decisiones sobre la información entregada por los especialistas y define los hitos de entrega. 
  • Requisitos de Información del Activo (AIR): Corresponden a los productos para la adecuada operación y mantenimiento. Estos se forman a partir de los requisitos de la organización y permiten saber qué y cómo debe entregarse el modelo de información para la operación (AIM).
  • Requisitos de Intercambio de Información (EIR): Especifican con precisión qué información se necesita en cada hito de información para permitir que se completen las actividades necesarias durante la fase de desarrollo y operación.

Figura 3. Jerarquía de los requisitos de información según la ISO 19650 y su relación.

Nota: La figura muestra ejemplos para los requisitos y los modelos de información en el contexto de una mejora en la calidad de la infraestructura educativa donde intervienen la parte que designa (Ministerio de educación) y la parte designada (consultoría y equipo). Fuente: Plan BIM Perú. Elaboración: Propia

Plan de ejecución BIM (BEP)

De acuerdo con la ISO 19650, El BEP es un plan que explica cómo el equipo de ejecución llevará a cabo los aspectos de gestión de la información. Como muchos documentos del proceso de gestión de la información ISO 19650, el BEP es un documento vivo que debe actualizarse continuamente durante todo el ciclo de vida del proyecto.

Dentro de los elementos que lo componen se encuentra la matriz de responsabilidades, que describe las funciones que cada uno de los equipos de trabajo; y la evaluación de la capacidades para demostrar que cada equipo puede producir y gestionar la información de acuerdo con lo establecido.

Entorno Común de Datos (CDE)

Se define como la fuente acordada de información para cada activo o proyecto, que permite reunir, gestionar y repartir cada conjunto de información a través de un procedimiento establecido. Con esto se logra trabajar de forma colaborativa. Así, los CDEs más utilizados en el mercado son: Trimble Connect, de Trimble Inc., BIM 360, de Autodesk; Bimplus, de ALLPLAN; usBIM.platform, de ACCA Software; BIM Server Center, de CYPE; Revizto, de Vizerra SA y EcoDomus, de EcoDomus Inc.

¿Cómo se relacionan?

Los conceptos que se mencionaron anteriormente nos permiten comprender cómo funciona el flujo BIM de la ISO 19650. Todo comienza con conocer los requisitos de información (EIR, OIR, AIR, PIR) que ya hemos visto para el activo de construcción tanto para la fase de desarrollo (diseño y construcción) como para la fase de operación (incluye el mantenimiento). Con estos requisitos se formula un plan de ejecución BIM (BEP) previo para conocer si se cuenta con la capacidad para cubrir con los objetivos. Luego se empieza a planificar cuáles serán los entregables, cuándo deben realizarse y cómo se gestionará la información. Aquí, el entorno común de datos juega un papel importante como un administrador de esa información, permitiendo que los “especialistas” puedan trabajar colaborativamente y generar la documentación, información no gráfica y modelo gráfico tanto del proyecto (PIM) como del activo (AIM). Finalmente, mientras se desarrolla el proyecto, la parte designada principal o “consultoría” comparte los entregables con el “cliente” para su revisión y aprobación.

Figura 4. Flujo de la gestión de información relacionando los conceptos anteriores.

Nota: La figura es una adaptación de varios esquemas para la gestión de información según la ISO 19650. Elaboración: Propia 

ISO 19650-2: Fase de desarrollo de los activos

En esta parte de la ISO se describe, principalmente, el proceso de gestión de la información comprendida durante la fase de entrega de activos que está formada por 8 etapas. Por ello, se desarrolla como un gran diagrama de flujo que ilustra cada punto y paso en la articulación del contrato. En la siguiente figura podemos ver la secuencia en dicho proceso.

Figura 5. Flujograma con las etapas para la gestión de la información BIM según la ISO 19650 .

Nota: En la figura se aprecia el flujo de procedimientos al realizar la gestión de un activo de construcción, donde las etapas del 2 al 7 se repiten para cada consultoría o “adjudicación” del proyecto, y las etapas 1 y 8 son inherentes sólo al proyecto. Fuente: buildingSMART Spain.

En los siguientes puntos describiremos a qué corresponde cada etapa de la gestión de información según la ISO 19650.

  1. Evaluación de necesidades

El “cliente” determina por qué se llevará a cabo las obras y establece los requisitos de información, los estándares y los hitos del proyecto (las fechas de control para el proyecto). Ejm: Se requiere mejorar la capacidad de una carretera.

  1. Petición de ofertas

El “cliente” establece sus criterios de evaluación de la respuesta a la licitación y luego emite una licitación invitando a las organizaciones a presentar ofertas formales por las obras. Ejm: La licitación se hace para el diseño de la carretera.

  1. Presentación de ofertas

Los posibles equipos de entrega preparan y envían una respuesta que demuestra su enfoque de las obras y evalúan su capacidad.

  1. Adjudicación

Se evalúan las ofertas y se selecciona el equipo de entrega exitoso, conocido como la parte designada líder o “consultoría”. El equipo de ejecución se somete a una planificación detallada y prepara un cronograma que describe cómo se completarán los trabajos. Ejm: Se escogió al equipo que tuvo más experiencia en ese tipo de proyectos.

  1. Movilización

El equipo de entrega se asegura de tener las personas, los procesos y la tecnología para entregar las obras, y los equipos están capacitados para hacerlo.

  1. Producción colaborativa de información

La información es generada por equipos de trabajo y luego, una vez aprobada, se comparte con otros equipos de trabajo como referencia. Ejm: el equipo de diseño comparte su información con el equipo de señalización.

  1. Entrega del modelo de información

La parte designante revisa el modelo de información publicado según sus criterios de aceptación y lo aprueba o rechaza como entregable contractual. Esto se repite para cada hito e información entregable en el proyecto.

  1. Fin de la fase de desarrollo 

Una vez aprobado, se completa el trabajo y finaliza el contrato. La información se archiva y se agrega en el modelo de información de activos (AIM) para la operación y mantenimiento continuos del activo.

¿Por qué es importante?

La ISO 19650 establece un marco unificado para la gestión colaborativa de información, facilitando la comunicación efectiva y el uso adecuado de sistemas y procesos. Esto garantiza la entrega oportuna y conforme a estándares de proyectos de entornos construidos. Sin embargo, su adopción requerirá esfuerzos conjuntos de la industria para realizar su potencial y difundir su comprensión entre los profesionales del sector. Actualmente, muchos países como México, Perú, Ecuador, entre otros; están sumando esfuerzos a través de sus lineamientos y guías para una correcta adopción de la ISO, relevando su claro apego a la gestión de información BIM en la construcción.

Conoce nuestro curso certificado 

En este artículo se presentaron algunos conceptos vistos en los cursos “Conceptos y principios de la Gestión de la Información al utilizar BIM según la norma ISO 19650 – 1” y “Gestión de la Información al utlizar BIM en la fase de diseño y construcción según la ISO 19650-2 ( Parte 1)”. Si te interesa conocer más sobre cómo trabajar con BIM en un marco internacional y destacar como un profesional del futuro de la construcción, te invitamos a llevar nuestros cursos.

Figura 6. Curso sobre Conceptos y principios de la gestión de información con la ISO 19650-1.

 Fuente: Konstruedu.com

Figura 7. Curso sobre Gestión de la información en la fase de desarrollo con la ISO 19650-2.

 Fuente: Konstruedu.com

Conclusiones

La norma ISO 19650 establece un marco unificado para la gestión de información en proyectos de construcción, facilitando la comunicación entre las partes y promoviendo la entrega oportuna y conforme a estándares. Su implementación requiere esfuerzos colaborativos de la industria para alcanzar su máximo potencial y difundir su comprensión entre los profesionales del sector, lo cual se está impulsando en varios países de América Latina.

Referencias Bibliográficas

[1] buildingSMART Spain. (2021). INTRODUCCIÓN A LA SERIE EN ISO 19650. https://www.buildingsmart.es/recursos/en-iso-19650/

[2] Ricalde, L. (2023). Una visión general de la ISO 19650. Konstruedu. https://konstruedu.com/es/blog/una-vision-general-de-la-iso-19650

[3] Zoroquiain, A. (2023). ISO 19650 PARTE 1 Y 2, ¿QUÉ ES LA ISO 19650?. Espacio BIM. https://www.espaciobim.com/iso-19650

[4] McPherson, M. (2022). The Ultimate Guide to ISO 19650 in 2024. 12d Synergy. https://www.12dsynergy.com/iso-19650-guide/


Escrito por Jorge Enrique Huaripata Ascate para KONSTRUEDU.COM

Categories
BIM Software-Apps

Revit + PowerBI para la gestión de datos de modelos BIM

Descubre cómo la combinación de herramientas como PowerBI y Revit revoluciona la gestión de datos en la industria de la construcción. Conoce junto con nosotros sobre el análisis de datos, PowerBI y aprende a integrarlo con Revit.


Introducción 

El análisis de datos y la gestión de información son pilares fundamentales en la industria de la construcción, donde los modelos BIM y herramientas como PowerBI juegan un papel crucial. Estas soluciones permiten una mejor comprensión y control de los proyectos, facilitando la toma de decisiones informadas. A través del flujo de PowerBI y la gestión de datos en Revit, se optimiza aún más la eficiencia y la precisión en la gestión de la información, llevando la construcción a nuevos niveles de optimización y calidad.

¿Qué es el análisis de datos?

El análisis de datos es una práctica esencial en la actualidad, que implica examinar conjuntos de información para explorar, interpretar y sacar conclusiones significativas. Al emplear herramientas estadísticas y computacionales, se busca comprender mejor diversos temas y tomar decisiones informadas en distintos campos, desde negocios hasta investigaciones científicas. 

En este contexto, los modelos BIM, que contienen información detallada sobre la geometría de los elementos, su fabricación, costo y mantenimiento, se presentan como uno de los candidatos ideales para una adecuada gestión y análisis de datos. Dando como resultado en un ahorro de tiempo durante la construcción, una reducción de la variabilidad en los proyectos y una mejor visualización de la planificación y las certificaciones dentro del modelo, con un control detallado de todos los elementos involucrados.

PowerBI

Entre las principales herramientas para la gestión de datos, se destaca PowerBI, desarrollado por Microsoft. Este es una suite de herramientas que unifica datos de diversas fuentes en información visualmente atractiva e interactiva. Además permite conectar fácilmente datos de Excel, de forma local y en la nube, permitiendo visualizar y compartir hallazgos significativos de forma colaborativa.

Figura 1. Sistema integrado de PowerBI Desktop, Service y Mobile.

Fuente: Microsoft (2014).

Proceso ETL con PowerBI

Extracción, transformación y carga (ETL) es una canalización de datos que se usa para recopilar datos de varios orígenes. Consiste en extraer información de diversas fuentes, transformarla según sea necesario y cargarla en un almacén de datos centralizado [3]. PoweBI funciona precisamente a través de este proceso ETL y lo hace gracias a la herramienta Power Query, permitiendo hacer los tres procesos a la vez. De esta forma, los datos en nuestro modelo BIM podrán ser corregidos y estructurados de mejor manera, permitiendo la importación solo de los datos necesarios para el control del proyecto.

Gestión de datos en Revit

Revit como software BIM es una herramienta muy potente en el manejo avanzado de datos puesto que genera y recopila información en el modelo tridimensional, como las propiedades de los elementos, los parámetros, las fórmulas, las tablas, los planos, etc.

Figura 2. Tabla de planificación en Revit.

Fuente: Konstruedu.com

Uno de los elementos más utilizados en la gestión de información en Revit es la tabla de planificación/cuantificación, dado que ha revolucionado la forma tradicional de hacer cuantificaciones, extrayendo volúmenes, áreas y longitudes en poco tiempo. Además, cuenta con otras tablas relevantes dentro del proyecto como el cómputo de materiales, lista de vistas y lista de planos. Esta información puede ser extraída del modelo como formato “csv” y llevada a cualquier plataforma que admita este formato.

A pesar del gran ahorro de tiempo que brinda usar las tablas de Revit en comparación con la forma tradicional empleando AutoCAD y Excel; no es posible la creación de reportes o informes visuales sobre los parámetros de los elementos, limitando en gran medida el análisis de los datos del modelo. La manera en la que se desarrolla comúnmente este análisis es creando vistas nuevas con filtros de cada categoría lo que alarga el tiempo para la gestión del modelo. Finalmente, aún se mantiene el uso de tablas de Excel para los reportes e informes, ralentizando aún más el proceso.

Figura 3. Flujo actual para el control de la cuantificación de materiales usando Revit .

Fuente: Escuela de Construcción digital / Konstruedu.com. Elaboración: Propia

Gestión de datos BIM con PowerBI

Para poder integrar la información y generar reportes de Revit en PowerBI basta con crear una tabla de planificación y exportarla en formato “csv”, para luego importarlo en PowerBI Desktop a través de PowerQuery (ver figura 4). Otra forma de hacerlo es utilizando el Add-in o Plugin “Diroots” en Revit, que nos permite exportar directamente en formato de Excel o Google Sheets.

Figura 4. Flujo de Revit y PowerBI para la gestión de datos con tablas de cuantificación.

Fuente: Konstruedu.com

Sin embargo, la mayor ventaja que ofrece PowerBI es poder interactuar con el modelo de Revit, por lo que se requiere de un enlace adicional (herramientas de integración) que permita conectar estas dos aplicaciones.

Herramientas de integración

Son plataformas o aplicativos que permiten la integración de datos del modelo BIM hacia otros software de interés. Esto lo realizan a través de una nube propia donde se sube el modelo y que además permite interactuar con el mismo. Algunos ejemplos de herramientos de integración son:

  • Speckle: Es una herramienta de código abierto que permite enviar y recibir datos de múltiples aplicaciones, logrando una integración completa entre los softwares empleados o “conectados”. Presenta un catálogo de conectores para programas de modelado como Revit, AutoCAD, Excel, Grasshopper, MicroStation, Rhino, ETABS, Unreal, Dynamo, Blender, Power BI, Civil 3D, SketchUp o QGIS entre otros. [5].
  • VIM: Actúa como un puente entre BIM y herramientas de inteligencia empresarial como Microsoft Power BI, facilitando la exportación de datos BIM y la creación de paneles interactivos en Power BI.
  • VCAD: Es la herramienta que puede extraer datos de tus archivos BIM y crear paneles interactivos preconfigurados en segundos. Con Vcad puedes mejorar tus informes con nuevos niveles de información y nuevas formas de interactuar con tus datos.

Integración PowerBI + Revit + Speckle

Para comenzar con la interoperabilidad de los programas, hay que descargar el Manager de Speckle y crear una cuenta. Esta se vinculará a tu ordenador para extraer el modelo de Revit. 

Una vez cargado el Manager, se activa el conector de Revit y se añadirá un plugin dentro de la Interfaz de Revit. Aquí se podrá seleccionar los elementos o el modelo completo que se desea llevar a Speckle, así como elegir los parámetros que se subirán a su nube.

Figura 5. Flujo de Revit + PowerBI integrando Speckle.

Fuente: Konstruedu.com

Solo queda integrar este modelo en Speckle a PowerBI. Para ello se debe activar la opción “público” de tal forma que se pueda ver en PowerBI. Sin embargo, para visualizar el modelo digital se deben descargar plugins dentro de repositorios de GitHub: PowerBi-Speckle-Visual y Speckle.mez. Luego, se configura el software de PowerBI para aceptar conectores de orígenes externos y se importan dentro de la visualizaciones. En la figura 5 se muestra un resumen del proceso para integrar modelos de Revit a Power con Speckle.

Aplicaciones

El uso común de PowerBI es la generación de Dashboards o panel de datos, que son herramientas de gestión utilizadas para visualizar y analizar datos de manera efectiva. Además, funciona como una interfaz gráfica que muestra información de nuestro modelo de manera clara y concisa.

Cada dashboard generado en PowerBI es personalizado y las opciones de visualización dependen de cada usuario, así como el uso que se le dé dentro del entorno. Así, entre los principales dashboard que se pueden elaborar dentro de PowerBI tenemos:

Dashboard de revisión de modelos

A través de la nube de Speckle no será necesario descargar la tabla de cuantificación desde Revit, bastará con subir el modelo a la nube de Speckle para extraer las características y propiedades de los materiales. De esta manera podremos insertar nuestro modelo y visualizar si los elementos están bien categorizados y codificados dentro de Revit, logrando una revisión más integrada y rápida del modelo.

Figura 6. Dashboard de revisión de modelos en PowerBI.

Fuente: Konstruedu.com

Dashboard de cuantificaciones

Así como las propiedades del modelo, también permite realizar el cómputo de materiales, extrayendo la información a las tablas de PowerBI. Así, podremos ver las partidas de la edificación junto con sus cantidades y visualizarlas junto con el modelo. Además, se puede incorporar gráficas interrelacionadas para analizar en detalle las cantidades por nivel, material o categorías.

Figura 7. Dashboard de cuantificación de concreto en PowerBI.

Fuente: Konstruedu.com

Dashboard de interferencias

Otro dashboard muy común en la gestión de datos BIM es la detección de interferencias incorporando Navisworks. Esto se realiza subiendo los modelos de las distintas especialidades y un modelo integrado a la nube de Speckle. Luego, dentro de Navisworks se empleará el análisis de colisiones para luego exportar el informe de interferencias. Finalmente, se colocan dentro del Dashboard, los modelos de cada especialidad y también la tabla con los informes de interferencias, obteniendo revisiones que permiten solucionar de forma más rápida las incompatibilidades del modelo.

Figura 7. Dashboard BIM para interferencias en PowerBI.

Fuente: Konstruedu.com

Conoce nuestro curso certificado 

En este artículo se presentaron algunos conceptos extraídos del curso “Gestión de datos de modelos BIM con PowerBI + Revit”. Si te interesa conocer más sobre las funcionalidades de PowerBI y cómo enlazar un modelo de Revit, 

Figura 8. Curso “Gestión de datos de modelos BIM con PowerBI + Revit.

 Fuente: Konstruedu.com

Conclusiones

En conclusión, la integración de herramientas como PowerBI y el proceso ETL en la gestión de datos en Revit ofrece un enfoque completo para optimizar la eficiencia y la calidad en la construcción. La combinación de modelos BIM y plataformas de análisis de datos permite una mejor comprensión y control de los proyectos, facilitando la toma de decisiones informadas. Además, la interoperabilidad con herramientas de integración como Speckle, VIM y VCAD proporciona una solución integral para la gestión y análisis de datos en proyectos de construcción, llevando la industria a nuevos niveles de eficacia y rendimiento.

Referencias Bibliográficas

[1] Microsoft. (s.f.). Extracción, transformación y carga de datos (ETL). Recuperado de https://learn.microsoft.com/es-es/azure/architecture/data-guide/relational-data/etl

[2] Microsoft. (s.f.). Introducción a los paneles para los diseñadores de Power BI. Recuperado de 

https://learn.microsoft.com/es-es/power-bi/create-reports/service-dashboards

[3] Echeverri Montes, A. (2024). Por qué es clave dominar la gestión de datos en Revit. Recuperado de https://www.echeverrimontes.com/blog/por-que-es-clave-dominar-la-gestion-de-datos-en-revit#:~:text=La%20gesti%C3%B3n%20de%20datos%20en%20Revit%20se%20refiere%20al%20uso,tablas%2C%20los%20planos%2C%20etc.

[4] Santamaria, L. (2019). Tablas en Revit. Especialista3D. Recuperado de https://especialista3d.com/revit/tablas/

[5] Canal de YouTube de Konstruedu. (2023). Taller: Metrados de estructuras con Revit 2024. YouTube. https://www.youtube.com/watch?v=-rQOwy9miHs

[6] Konstruedu. (2024). Gestión de datos de modelos BIM con Power BI + Revit. Recuperado de 

https://konstruedu.com/curso/gestion-de-datos-de-modelos-bim-con-power-bi-revit


Escrito por Jorge Enrique Huaripata Ascate para KONSTRUEDU.COM

Categories
BIM

UNICLASS: Sistemas de clasificación BIM

¡Tu camino en BIM no acaba con el modelado! Conoce sobre los sistemas de clasificación BIM que revolucionan la gestión de proyectos en la construcción e ingeniería. Con códigos claros y una estructura unificada, UniClass facilita la comunicación entre profesionales y promueve la eficiencia en todas las etapas del proceso constructivo.


Introducción 

Los sistemas de clasificación son esenciales en la gestión de la información con  modelos BIM en proyectos de construcción e ingeniería, permitiendo una organización eficiente de datos. Ejemplos como UniClass proporcionan códigos lógicos para identificar cada elemento, facilitando la comunicación entre profesionales y fomentando la interoperabilidad entre fases del proyecto. Su adopción garantiza la transmisión efectiva de información, permite establecer requisitos específicos para cada elemento y facilita la detección de colisiones entre modelos, mejorando así la eficiencia y calidad en el proceso constructivo.

¿Qué son los sistemas de clasificación? 

Los sistemas de clasificación se tratan de herramientas para poder organizar y jerarquizar la información de acuerdo a las necesidades del proyecto. Esto se realiza mediante una jerarquía codificada de elementos o activos en los que se agrupan nuestros términos del proyecto. De esta forma, los equipos de trabajo optimizan sus recursos, se comprenden mejor y se reducen los errores en la fase de ejecución. Algunos softwares como Presto, emplean estos sistemas para estimar sus costos de forma precisa, acelerando enormemente el proceso de presupuestación con menos errores. [1]

Figura 1. Ejemplos de sistema de información que implementa Presto. (a) OmniClass. (b) IFC clases. (c) UniClass.

Nota: Las tablas se extrajeron del documento manual de Presto “Clasificaciones entregadas con Presto”. Fuente: RIB España – Presto.

Pensemos en este sistema como un homólogo a los ítems de presupuestos que presentan también orden y categorías. Sin embargo, estas categorías suelen limitarse a actividades de la obra como “Encofrado de concreto” y no abarca una codificación para el material “Concreto”. Sumado a esto, la terminología de cada país puede variar respecto a este concepto y evitan que otros agentes del proyecto puedan revisarlo [5]. Por el contrario, BIM busca que la información pueda ser entendida en las diversas fases del proyecto y por cualquier involucrado, por lo que estos sistemas de información son incorporados dentro y fuera del modelado (clasificando contratos, informes o estudios).

Las distintas formas de categorizar y gestionar definiciones constructivas en cada país, motivan a que se busque lenguajes y sistemas que se ajusten mejor a las particularidades de cada cultura de construcción. Así es como, de la mano de la ISO 10006-2 “Organization of Information about Constructions works – Part 2: Framework for Classification of Information”, se impulsó el desarrollo de Omniclass y Uniclass 2015, principalmente, y con esto el desarrollo de otras.

Figura 2. Algunos sistemas de clasificación usados en el mundo.

Nota: Datos extraídos de “Guía de Sistemas de Clasificación cuando se utiliza BIM”. Fuente: buildingSMART España. Elaboración: Propia

¿Qué es Uniclass?

De acuerdo con la NBS (National Building Specification), la clasificación unificada para la industria de la construcción o UniClass por sus siglas en inglés es una forma para organizar los requerimientos de la construcción y brindar una codificación lógica para cada ítem. Este código puede ser usado por cualquiera del rubro para la identificación de dichos requisitos. [4]

Tablas de Uniclass

Uniclass presenta una serie de clasificaciones agrupadas para proporcionar descripciones con más detalle y respalda aspectos específicos de la gestión de activos, proyectos y procesos. Es decir, no solo se centra en los elementos del modelado, si no también en la información compartida, en las actividades o estudios realizados. [4]

Para lograr la codificación de los elementos, Uniclass los agrupa dentro de estas tablas, cada una con dos letras para su representación. En otras palabras, si nosotros queremos nombrar a un elemento “columna” tendríamos que empezar agrupando en la tabla “Elementos/funciones”. Así como este, se presentan las categorías de las tablas con los ejemplos de cuáles elementos contiene.

Figura 3. Códigos y clasificaciones de tablas.

Fuente: Portal NBS. Elaboración: Propia.

Codificación en Uniclass

Como se observó en el cuadro anterior, cada código inicialmente se compone de dos letras que indican la categoría de la tabla correspondiente. Sin embargo, se amplía la descripción mediante números de hasta cuatro pares, permitiendo una mayor especificidad en niveles adicionales de detalle. Estos niveles posibilitan la clasificación de conjuntos de elementos cada vez más específicos, desde grupos hasta subgrupos, secciones y códigos objeto, como se ilustra en la figura siguiente. [4]

Figura 4. Estructura para la codificación en tablas.

Fuente: Portal NBS. Elaboración: Propia.

En el caso de querer describir, por ejemplo, un muro interno; debemos iniciar conociendo la tabla a la que corresponde (en este caso “Elementos/Funciones”). Segundo, se debe ubicar el grupo de “Muros y elementos de barrera”, para luego ubicar el subgrupo de “Muros”, y finalmente tendremos la sección de “Muros internos”. En resumen, su codificación sería: EF_25_10_40.

Figura 5. Ejemplos de clasificación para sistemas y entidades.

Nota: Ejemplo obtenido de la “Guía de Sistemas de Clasificación cuando se utiliza BIM”. Fuente: buildingSMART España. Elaboración: Propia.

¿Cómo usar Uniclass?

Para emplear Uniclass dentro de nuestros modelos, debemos descargar primero las tablas actualizadas desde su página web (https://uniclass.thenbs.com/download). En la siguiente figura se muestra el formato empleado por Uniclass para la codificación de los elementos. Deberás asignar los elementos de tu modelo a esa clasificación.

Figura 6. Codificación para la categoría Elementos/funciones.

Fuente: Portal NBS.

Seguramente no conocías que Revit ya cuenta con sistemas de clasificación, en este caso para Omniclass y Uniformat. Estas opciones las encontrarás en los parámetros de tipo del modelo, así como en la sección de materiales como “Notas clave” o “Clave de montaje”. Así mismo, también es posible añadir otros sistemas de clasificación personalizables como se muestra en la figura siguiente.

Figura 7. Codificación para la categoría Elementos/funciones.

Fuente: Hoyos (2020).

¿Por qué usar sistemas de clasificación?

Tanto los administradores de la infraestructura, las empresas constructoras y los equipos de diseño de ingenieros y arquitectos pueden emplear UniClass al mismo tiempo, haciéndolo versátil en todas las fases del proyecto. Como se plantea en el siguiente ejemplo (Ver Figura 8), si durante la planificación el arquitecto emplea sus propios términos (“Lucernario”), estos podrán ser leídos por la constructora, a pesar de tener otro término para el mismo elemento (“Tragaluz”). A su vez, quien gestiona el proyecto podrá examinar también el elemento y convertirlo a otro sistema de clasificación.

Figura 8. Ventajas de emplear un sistema de clasificación BIM.

Nota: Ejemplo tomado de la “Guía de Sistemas de Clasificación cuando se utiliza BIM”. Fuente: buildingSMART España. Elaboración: Propia.

Entre las principales ventajas resaltan:

  • Garantizan la transmisión de información a otras fases posteriores para poder buscarlos con otros sistemas de clasificación, así como te ayudan a estructurar tu modelo con bases y términos conocidos por los involucrados. [3]
  • Permiten fijar diferentes requerimientos sobre cada elemento del modelo, teniendo un control total sobre su contenido. [3]
  • Ayudan en la coordinación y detección de colisiones entre modelos, así como para el desarrollo del presupuesto y mantenimiento. [3]

Conclusiones

UniClass emerge como una herramienta invaluable en el ámbito de la construcción e ingeniería, ofreciendo una estructura unificada y lógica para la organización de información. Su adopción no solo facilita la comunicación entre los diversos actores del proyecto, sino que también promueve la interoperabilidad y la eficiencia en todas las etapas del proceso constructivo. Al proporcionar códigos claros y detallados para identificar cada elemento, UniClass garantiza una gestión integral de la información, permitiendo a los profesionales trabajar de manera más precisa y colaborativa. En última instancia, la implementación de UniClass, así como de otros sistemas de clasificación, representa un paso crucial hacia la mejora continua en la planificación, ejecución y entrega exitosa de proyectos en la industria de la construcción.

Referencias Bibliográficas

[1] Sánchez, F. (2023). Aplicación de la metodología BIM: sistemas de clasificación. Obtenido de:

https://www.kin.energy/blogs/post/aplicaci%C3%B3n-de-la-metodolog%C3%ADa-bim-sistemas-de-clasificaci%C3%B3n

[2] buildingSMART Spain. (2022). Guía de Sistemas de Clasificación cuando se utiliza BIM. 

[3] Esarte, A. (2020). Uniclass, ¿Qué es Uniclass y Uniclass 2015?. Obtenido de:

https://www.espaciobim.com/uniclass

[4] National Building Specification. (2022). What is Uniclass? Obtenido de:

https://www.thenbs.com/knowledge/what-is-uniclass

[5] López, J. (2020). Sistemas de clasificación consistente, mejor con BIM. Obtenido de:

https://bimanagement.co/2020/05/21/sistemas-de-clasificacion-consistente-mejor-con-bim/

Escrito por Jorge Enrique Huaripata Ascate para KONSTRUEDU.COM

Categories
BIM

BIM en México: Encuesta Nacional BIM 2023

Cada vez más países se suman a implementar BIM como una medida para mejorar la productividad en proyectos de infraestructura. En este contexto, México está en camino de lograr sus objetivos gracias a la iniciativa de la Secretaría de Hacienda y BIM Task Group México. Este último muestra una encuesta sobre la metodología BIM aplicada a empresas, instituciones y autoridades que exploraremos en este artículo.


Introducción 

La adopción de BIM en México ha sido un proceso impulsado por una combinación de iniciativas gubernamentales y esfuerzos colaborativos entre la industria, la academia y entidades públicas. Desde la formulación de una estrategia en 2019 hasta los avances reportados en 2023, se evidencia un creciente interés y compromiso por parte de diversos actores en incorporar esta metodología en el sector de la construcción. Sin embargo, este proceso también ha puesto de manifiesto desafíos y oportunidades, desde la necesidad de mayor respaldo institucional hasta la promoción de la capacitación y la adopción generalizada de estándares nacionales. En este contexto, el papel de BIM Task Group México emerge como un actor clave en la facilitación y promoción de mejores prácticas para una transición exitosa hacia un enfoque BIM en México.

Adopción BIM 

En 2019, la Secretaría de Haciendo y Crédito Público de México (SHCP) desarrolló la “Estrategia para la implementación del modelado de información de la construcción (MIC)”, un documento que marcaría el plan hasta 2026 para transitar del modelo tradicional de planear y construir obras públicas hacia un modelo basado en una metodología de trabajo colaborativa (BIM) que optimice los procesos y documente el ciclo de vida de los proyectos. (SHCP, 2019).

Posteriormente, se realizó un proceso de transición de la Estrategia BIM desde la SHCP hacia la Secretaría de Movilidad y Planeación Urbana del Estado de Nuevo León para su reestructuración. Este último, ha conseguido importantes logros como la publicación de la “Guía para las Licitaciones Pública BIM” (Serrano, 2020)

Figura 1. Estrategia para la implementación del modelado de información de la construcción (MIC).

Fuente: Secretaría de Haciendo y Crédito Público de México.

Panorama general 

De acuerdo con Soto & Manríquez en su publicación del 2023 sobre el “Panorama general del avance de BIM en América Latina y el Caribe”, se menciona que las principales iniciativas públicas y privadas en México corresponden a la Secretaría de Haciendo y Crédito Público, y BIM Task Group México; respectivamente. En este documento se entrevistaron a profesionales representantes de ambas organizaciones y se evidenció lo siguiente:

  • En el sector académico se recalca que, tanto en México como otros países, las capacitaciones y difusión sobre BIM son consideradas relevantes.
  • Para el ámbito público, México cuenta con una iniciativa en el gobierno a través de su Secretaría de Hacienda. 
  • Dentro de la información recibida en el estudio, México y demás países presentaron sus principales problemas al intentar adoptar BIM en sus contextos nacionales, entre los cuales se identificó que el ámbito político genera mayores desafíos, como una resistencia al cambio y el constante cambio de autoridades que impide continuar con las acciones planteadas antes de la transición administrativa (Ver figura 2).

Figura 2. Gráfica sobre los principales obstáculos a las iniciativas públicas.

Nota: En la figura se muestran los 10 obstáculos más comunes en países de América Latina y El Caribe en un ranking promedio del 1 al 5 por los distintos países. Fuente: Corporación Andina de Fomento. Elaboración: Propia.

BIM Task Group México 

En 2013 surge un grupo conformado por empresas, instituciones académicas y entidades públicas que buscan promover esta adopción de BIM en el contexto mexicano. Así BIM Task Group México, inspirado en su homólogo de Reino Unido, busca alinear los esfuerzos del sector público, la industria y la academia para que este propósito en común sea ordenado y eficiente. (BIM Task Group México, 2023)

¿Qué se ha logrado en 2023?

Como parte de las actividades de BIM Task Group, se ha publicado su reporte anual 2023 acompañado de las encuestas realizadas en los sectores de industria, académico y de gobierno. Se contemplan los siguientes avances y proyecciones por cada ámbito. 

  • Comisión de Industria: Además de colaborar durante el Congreso Guanajuato BIM, los trabajos se centraron en la publicación de la “Guía de Adopción BIM para PYMES”, la cual busca ayudar a las empresas micro, pequeñas y medianas a conocer los puntos críticos para la adopción BIM en su rubro.
  • Comisión de Gobierno: Entre los principales aportes se destaca el desarrollo de la “Guía de Adopción BIM en Gobiernos Estatales y Municipales” que busca proveer a los gobiernos de una serie de pasos claros y puntuales para que puedan iniciar el proceso de adopción BIM de una manera fácil, estructurada y tener resultados en menos tiempo.
  • Comisión de Academia: Este año se prevé trabajar, principalmente, en la “Guía de implementación BIM para instituciones académicas” y así puedan incorporar la metodología BIM en sus planes de estudio.

Estatus de BIM en México: Encuesta nacional BIM 

Desarrollado por BIM Task Group México, consiste en una serie de 3 formularios que se aplicaron a personas del sector privado (industria), sector público (gobiernos) y las universidades (academia) para analizar el estado de BIM en estos sectores y así elaborar estrategias para este año 2024.

Figura 4. Rubros aplicados en la adopción BIM y en la presente encuesta.

Fuente: BIM Task Group México.

Los principales resultados de la encuesta por cada sector se muestran en los siguientes párrafos: 

Sector Academia

Dentro de la encuesta fueron considerados tanto profesores como autoridades de las universidades e institutos académicos pertenecientes al sector público y privado (87% de los encuestados). A continuación, se presentan los resultados más relevantes.

BIM como eje transversal: Como se muestra en la Figura 5, solo un 10% de los encuestados está revisando periódicamente la implementación de BIM, contra un 60%. Según se menciona en el estudio, se sigue viendo a la metodología como algo a futuro a pesar de que las fechas máximas para cumplir las metas planteadas están próximas a cumplirse.

Figura 5. Resultado de la encuesta nacional BIM enfocado al sector academia – Pregunta 27.

Fuente: BIM Task Group México. Elaboración: Propia.

Abordar BIM de forma transversal implicaría que se integra de manera horizontal y continua a lo largo de todos los cursos y disciplinas dentro de los planes de estudio, en lugar de ser tratado como un tema aislado o independiente.

Planta docente capacitada en BIM: Como se muestra en la Figura siguiente, se observa que aproximadamente el 80% de los encuestados indican que entre el 0 – 20% de su planta docente está capacitado en BIM, lo que sugiere un bajo nivel significativo de preparación. Por otro lado, solo el 11,1% de los encuestados menciona que tienen más del 40% del personal capacitado, formando así una brecha bastante clara en la capacitación de los docentes. De aumentar la preparación se podrán transmitir conocimientos claros a los estudiantes..

Figura 6. Resultado de la encuesta nacional BIM enfocado al sector academia – Pregunta 30.

Fuente: BIM Task Group México. Elaboración: Propia.

Sector Industria

Se tuvo dentro de los encuestados a profesionales independientes, empresas pequeñas (hasta 10 trabajadores), medianas (11 a 50 trabajadores) y grandes (51 a más). A continuación se muestran los resultados principales obtenidos en la encuesta.

Infraestructura tecnológica en empresas: El 26.2% Dentro de las empresas se evidencia que la infraestructura tecnología para aplicar BIM son inadecuados. Mientras que sólo un 9.2% invierte constantemente en  adquisición de equipos para ser más competentes. Esto genera una brecha en la industria, impidiendo que pueda expandirse hacia más niveles y consolidar la adopción de BIM.

Figura 7. Resultado de la encuesta nacional BIM enfocado al sector industria – Pregunta 13.

Fuente: BIM Task Group México. Elaboración: Propia.

Conocimiento de las estrategias BIM: Uno de los principales problemas que se identifican en el sector industria es la carencia de conocimiento acerca de la Estrategia de Implementación MIC para México, con más de un 70% de encuestados. Se identifica un factor de mejora en la difusión del contenido público y también en las guías que fueron publicadas recientemente.

Figura 8. Resultado de la encuesta nacional BIM enfocado al sector industria – Pregunta 27.

Fuente: BIM Task Group México. Elaboración: Propia.

Sector Gobierno

Se han considerado dentro de la muestra a directivos, coordinadores y funcionarios de instituciones del gobierno federal, gobiernos estatales y gobiernos municipales, tanto con instituciones dentro (11.1%) y fuera de BIM Task Group (88.9%). En los siguientes párrafos se detallan los principales puntos dentro del sector.

Transformación digital: En cuanto a la transformación digital en el sector de la construcción, las instituciones muestran que hay una conciencia de la importancia de la transformación digital en el sector de la construcción en México. Algunas instituciones consideran que es un punto clave para el avance del sector, pero aún no tienen un plan de acciones para iniciar la transformación (35.7%). Otras instituciones están conscientes de la importancia y están revisando planes y programas para avanzar en esta transformación (32.1%), mientras que algunas ya están realizando acciones concretas en este sentido (17.9%)

Figura 9. Resultado de la encuesta nacional BIM enfocado al sector gobierno – Pregunta 1.

Fuente: BIM Task Group México. Elaboración: Propia.

Estas respuestas reflejan la diversidad de enfoques y niveles de avance en la adopción de la transformación digital en el sector de la construcción en México, lo que sugiere la necesidad de un enfoque holístico que integre políticas claras, estándares y normatividad a nivel nacional, incentivos financieros. y programas de capacitación continua para lograr una implementación exitosa de la metodología BIM en el sector público mexicano.

Nivel de adopción BIM: Se identificó un nivel limitado en la adopción de BIM debido a factores como: La falta de conocimiento sobre la metodología (33.3%), la falta de claridad en los procesos de adopción y la escasez de capacitación son desafíos clave. Además, la carencia de respaldo ejecutivo y financiero (22.2%), junto con la insuficiente infraestructura de hardware y software, también obstaculizan su implementación. Estos obstáculos combinados resultan en una adopción parcial de BIM, limitando así los beneficios potenciales que ofrece esta metodología en el sector de la construcción.

Figura 10. Resultado de la encuesta nacional BIM enfocado al sector gobierno – Pregunta 17.

Fuente: BIM Task Group México.

Para superar los desafíos mencionados y promover una implementación más efectiva de BIM en el sector gubernamental, es crucial adoptar un enfoque integral que incluya educación, planificación estratégica, capacitación continua, apoyo ejecutivo y asignación de recursos adecuados. Es esencial que los líderes gubernamentales respalden activamente la implementación de BIM asignando recursos financieros y proporcionando el apoyo necesario para garantizar el éxito de los proyectos BIM.

Conclusiones

México ya ha dado pasos en su transformación hacia una metodología más colaborativa y eficiente; sin embargo, su proceso de adaptación aún es lento en el sector público debido a la carencia de acciones sólidas para la incorporación de BIM en el ámbito federal, estatal y local. A nivel internacional aún no se perciben estrategias claras y se asignan pocos recursos en esta iniciativa. Por otro lado, las instituciones educativas se muestran renuentes a un cambio en los planes de estudios enfocados a BIM, debido al carente conocimiento de la metodología por parte de los docentes y autoridades. Mientras tanto, el sector privado ha realizado avances significativos de la mano de BIM Task Group México, implementando guías en la industria y gobierno, con miras a desarrollar guías para la academia. Finalmente, lo que se necesita es un enfoque holístico que integre políticas claras, estándares y normatividad a nivel nacional; así como incentivos financieros para su implementación y programas de capacitación recurrentes.

Referencias Bibliográficas

[1] Secretaría de Hacienda y Crédito Público. (2019). Estrategia para la implementación del modelado de información de la construcción (MIC) en México. Obtenido de: https://www.gob.mx/cms/uploads/attachment/file/473961/Plan_estrategico_MIC.PDF

[2] Soto, C. & Manríquez, S. (2023). Panorama general del avance de BIM en América Latina y el Caribe. Corporación Andina de Fomento. Obtenido de https://scioteca.caf.com/handle/123456789/2022

[3] BIM Task Group México. (2024). Encuesta Nacional BIM 2023 – Resultados del diagnóstico – Sector Académico. Obtenido de: 

https://www.bimtaskgroupmx.com/_files/ugd/ce9544_6ed0552151a647e193888e50b6ed6aab.pdf

[4] BIM Task Group México. (2024). Encuesta Nacional BIM 2023 – Resultados del diagnóstico – Sector Gobierno. Obtenido de: 

https://www.bimtaskgroupmx.com/_files/ugd/ce9544_58540ad685184e5c8225f4614481f446.pdf

[5] BIM Task Group México. (2024). Encuesta Nacional BIM 2023 – Resultados del diagnóstico – Sector Industria. Obtenido de: 

https://www.bimtaskgroupmx.com/_files/ugd/ce9544_550206e7898f4b888b6cf64badbc6f66.pdf

[6] BIM Task Group México. (2024). Reporte Anual de Actividades 2023. Obtenido de: https://www.bimtaskgroupmx.com/_files/ugd/ce9544_9eb42bb659a44235acb03459dabf84c1.pdf

[7] BIM Task Group México. (2023). Guía de adopción BIM para Gobiernos Estatales y Municipales. Obtenido de: 

https://www.bimtaskgroupmx.com/gu%C3%ADa-bim-para-gobiernos

[8] BIM Task Group México. (2023).Guía de adopción BIM para PYMES. Obtenido de: 

https://www.bimtaskgroupmx.com/guia-bim-para-pymes

[9] Serrano, O. (2022).BIM en México es MIC, Análisis de la Realidad Mexicana en la Implementación de la metodología MIC. ICIC Nacional. Obtenido de: https://www.youtube.com/watch?v=TfUfZJgwTbc&t=1121s

Escrito por Jorge Enrique Huaripata Ascate  para KONSTRUEDU.COM

Categories
Innovación y Transformación Digital Sin categoría

SMART CITIES: El camino hacia las ciudades del futuro.

Las ciudades inteligentes, en respuesta a los desafíos urbanos contemporáneos, representan un enfoque innovador que integra tecnologías avanzadas para mejorar la calidad de vida y abordar problemáticas urbanas. Impulsadas por estrategias de digitalización.


Introducción 

Las crecientes demandas urbanas y los desafíos que enfrentan las ciudades modernas, surge la  necesidad de encontrar soluciones innovadoras que mejoren la calidad de vida de los habitantes y aborden problemáticas como la congestión del tráfico, la contaminación ambiental, la gestión eficiente de recursos y la seguridad pública. Las ciudades actuales se enfrentan al rápido crecimiento poblacional y la urbanización y ante este escenario, el concepto de “smart cities” o ciudades inteligentes se destaca como una respuesta estratégica y tecnológica para transformar estas problemáticas en oportunidades de mejora.

¿Qué es  SMART CITY?

Una ciudad inteligente, o “smart city” en inglés, se refiere a un enfoque urbanístico que utiliza tecnologías de la información y la comunicación (TIC) para mejorar la calidad de vida de sus habitantes y optimizar la eficiencia de los servicios urbanos. El objetivo principal de una smart city es integrar la tecnología de manera inteligente en la gestión de recursos, infraestructuras y servicios urbanos para hacer que la ciudad sea más sostenible, eficiente y habitable.

Nota: Seúl  Fuente: ATRESMEDIA

Características 

Una Smart city se va a caracterizar esencialmente por lo siguiente:: 

  • Conectividad: Extensa utilización de redes de comunicación para enlazar dispositivos y sistemas, facilitando la recolección e intercambio de datos.
  • Sensores  IoT: Despliegue de sensores en toda la ciudad para recopilar información en tiempo real sobre aspectos como calidad del aire, tráfico y consumo de energía.
  • Gestión inteligente de recursos: Empleo de datos para optimizar el uso de recursos como energía, agua, transporte y residuos.
  • Movilidad sostenible: Promoción de opciones de transporte público eficiente, movilidad compartida y medios sostenibles como bicicletas y vehículos eléctricos.
  • Eficiencia energética: Aplicación de tecnologías para reducir el consumo de energía en edificios, alumbrado público y otras infraestructuras.
  • Sostenibilidad ambiental: Fomento de prácticas que reduzcan el impacto ambiental, como la gestión eficiente de residuos y la promoción de energías renovables.

Claves para la Transformación

La transformación hacia Smart Cities implica la digitalización de servicios públicos, como el uso de portales de Internet para solicitar servicios y realizar pagos. Este proceso, previo a planes más complejos de informatización, requiere considerar recursos humanos, capacitación y una visión a largo plazo. Para desarrollar soluciones inteligentes, es crucial realizar un diagnóstico previo de los problemas, identificar recursos tecnológicos y evaluar la viabilidad financiera.

El proyecto de Ciudad Inteligente debe ser gestionado como una iniciativa municipal a largo plazo, evitando discontinuidades y considerando etapas sucesivas. La atención al ciudadano debe ser el foco principal, y la elaboración de un plan de monitoreo con indicadores de desempeño es esencial. El inicio con proyectos piloto, seguido de avances acordes a las capacidades institucionales y financieras, es clave.

El liderazgo efectivo, respaldado por aliados, es fundamental para ejecutar la transformación y materializar la visión de eficiencia en la administración de la ciudad. Todo proyecto de Ciudad Inteligente exige un líder con autoridad para ejecutar esa transformación que cuente con la capacidad de atraer aliados. El líder necesita ser capaz de crear y defender la visión de futuro proyectada con el objetivo de que la administración de la ciudad sea más eficiente, y aunar esfuerzos para materializarla.

Smart Cities en la actualidad 

A continuación, se muestran algunas de las ciudades consideradas las más inteligentes del mundo, destacando por implementar tecnología con el fin de solucionar problemáticas de manera inteligente y eficiente en pro de la sociedad. 

Shanghai

Destaca por el Shanghai’s Citizen Cloud, una plataforma que ofrece más de 1200 servicios para los ciudadanos, permitiendo un contacto eficiente con el gobierno a través de un solo teléfono, eliminando la necesidad de buscar números específicos para cada departamento.

Nota: La ciudad de Shanghai  Fuente: The independent.

Seúl

Seúl implementa proyectos como robots patrulla autónomos y balizas inteligentes para prevenir la desaparición de niños, transmitiendo señales para seguir su ubicación en tiempo real.

Nota: Robots de servicio en el aeropuerto Internacional de Incheonde Seúl Fuente: La vanguardia.

Barcelona

Destaca por su sistema de transporte mayoritariamente renovable, rutas diagonales, alumbrado público LED y contenedores inteligentes para la gestión eficiente de residuos, contribuyendo al progreso de la ciudad.

Nota: Sistema de iluminación LED en Barcelona  Fuente: Barna Diario. 

Beijing

Utiliza una tarjeta virtual para gestionar los documentos de identidad de los ciudadanos y permite el pago del transporte público a través de teléfonos. Enfrenta la contaminación identificando y cerrando las mayores fábricas contaminantes cuando no están en producción.

Nota: La ciudad de Beijing  Fuente: KAYAK

Nueva York 

El epicentro económico mundial ha progresado en eficiencia energética e hídrica, implementando un sistema de lectura automática de contadores. Además, mejora la eficiencia en la recogida de basura mediante chips y contenedores solares.

Nota: La ciudad de New York  Fuente: ADmagazine

Conclusiones 

Las ciudades inteligentes surgen como una solución a los desafíos urbanos contemporáneos. Al integrar estratégicamente tecnologías, buscan abordar problemáticas comunes de la sociedad actual y avanzar hacia un entorno sostenible que permita la gestión inteligente de recursos, mejorando así la calidad de vida de los habitantes. La implementación exitosa de proyectos de ciudades inteligentes requiere estrategias de digitalización, un liderazgo efectivo, atención al ciudadano y un enfoque gradual y sostenible para la transformación urbana.

Bibliografía

Bouskela, M., Casseb, M., Bassi, S., De Luca, C., & Facchina, M. (2016). La ruta hacia las Smart Cities: Migrando de una gestión tradicional a la ciudad inteligente.

Iberdrola. (2022). ‘Smart cities’: la revolución tecnológica llega a las ciudades. Recuperado de https://www.iberdrola.com/innovacion/smart-cities#:~:text=CARACTER%C3%8DSTICAS%20DE%20UNA%20%27SMART%20CITY,urbana%20y%20transporte%20p%C3%BAblico%20sostenible

Carrillo Guajardo-Fajardo, F. J. (2019). Definición de estrategias y planes para el desarrollo de la ciudad inteligente. Referencias y buenas prácticas. Recuperado de https://www.esmartcity.es/comunicaciones/comunicacion-definicion-estrategias-planes-desarrollo-ciudad-inteligente-referencias-buenas-practicas

 

Escrito por Axel David López Flores  para KONSTRUEDU.COM

Categories
BIM

CoBie: Un estándar para el intercambio y entrega de información BIM

COBie, que significa Construction Operations Building Information Exchange, ha surgido como un estándar fundamental en la industria de la construcción para abordar desafíos relacionados con la falta de estandarización en la entrega de información.


Introducción 

La falta de estandarización en la entrega de información en la industria de la construcción ha dado lugar a problemas como la pérdida de datos, ineficiencias en la gestión de activos y comunicación deficiente entre los stakeholders del proyecto. Para abordar estas problemáticas, se ha desarrollado un estándar que establece un formato estructurado para la organización y entrega de datos, mejorando la interoperabilidad y facilitando la conservación de información crítica a lo largo del ciclo de vida del edificio, el estándar COBie.

COBie 

COBie, que significa Construction Operations Building information exchange, es un estándar internacional que se centra en la gestión y entrega de información relacionada con la construcción y las operaciones de un edificio.

En esencia, COBie proporciona un formato estructurado y estandarizado para la organización y la entrega de datos de construcción y operaciones. Estos datos incluyen información sobre los componentes del edificio, sus características, mantenimiento, y otros detalles importantes que son útiles para la gestión y el mantenimiento del edificio a lo largo del tiempo.

Imagen: La imagen muestra la portada del documento Construction-Operations Building Information Exchange que introducía el concepto COBie, lanzado por el Centro de Investigación y desarrollo de ingenieros de EEUU en el 2007.  Fuente: US Army Corps of Engineers 

CMMS y CAFM 

COBie actúa como un estándar que facilita la transferencia automática de datos desde el modelo de construcción BIM al CMMS (Computerized Maintenance Management System) o CAFM (Computer-Aided Facility Management). Ambos, CMMS y CAFM, son software especializado para la planificación y seguimiento de actividades de mantenimiento, así como para la gestión global de instalaciones mediante tecnología informática. Comparten la necesidad de información precisa y estructurada. COBie mejora la consistencia y eficiencia en la gestión de activos y mantenimiento al proporcionar un formato estandarizado para la organización y transferencia de datos entre estos sistemas y los modelos BIM.

Imagen: La imagen muestra el flujo de trabajo con COBie  Fuente: BIM HOUSE

¿Cuál es su formato ?

COBie generalmente se implementa en formatos de hojas de cálculo, específicamente en archivos de formato Excel (.xlsx). Estos archivos contienen hojas de trabajo estructuradas según el estándar COBie, que organizan la información en categorías y atributos específicos para facilitar su comprensión y gestión.

}

Imagen: La imagen muestra la representación de una estructura COBie en excel  Fuente: Distrito BIM

¿Cuáles son sus parámetros? 

COBie establece una estructura de parámetros específica que se utiliza para organizar la información. Algunos de los parámetros clave incluyen:

  • Name (Nombre): Los nombres de los elementos del edificio, que permiten su fácil identificación.
  • Category (Categoría): La categoría a la que pertenece cada componente, como paredes, puertas, sistemas mecánicos, etc.
  • Type (Tipo): El tipo específico de cada componente, por ejemplo, el tipo de pared o la clase de puerta.
  • Space (Espacio): La ubicación física del componente dentro del edificio, asociado a un espacio específico.
  • Description (Descripción): Información detallada sobre las características y propiedades de cada componente.
  • Attribute (Atributo): Atributos específicos asociados a cada componente, como dimensiones, materiales, y otros detalles.
  • System (Sistema): Información sobre los sistemas a los que pertenecen los componentes, por ejemplo, sistemas eléctricos, de fontanería, etc.
  • Manufacturer (Fabricante): Datos sobre el fabricante de los componentes del edificio.
  • Installation Date (Fecha de Instalación): La fecha en que se instaló cada componente.

Es importante tener en cuenta que los detalles exactos y la cantidad de parámetros pueden variar según las necesidades específicas del proyecto y la fase de implementación de COBie.

¿Con qué software trabaja ?

En cuanto a los software que admiten COBie, programas de modelado BIM y herramientas de gestión de instalaciones han incorporado la capacidad para exportar e importar datos en formato COBie. Algunos de los programas comunes que soportan COBie incluyen:

Para modelado BIM  que permita a los usuarios exportar datos en formato COBie:

  • Autodesk Revit: 
  • ArchiCAD:  

Para revisión y coordinación de modelos BIM:

  • Navisworks
  • Solibri Model Checker

Otros:

  • Excel y Herramientas de Hojas de Cálculo

La compatibilidad con COBie puede variar entre versiones de software, por lo que es importante verificar la documentación y las capacidades específicas de cada herramienta.

Aplicaciones 

Supongamos que la construcción de un nuevo edificio ha sido completada. En este punto, tanto el propietario como el equipo de operaciones deben gestionar y mantener eficientemente el edificio. Se establece una división de responsabilidades, donde el equipo de construcción se encargará de entregar la información as built, mientras que el equipo de operación y mantenimiento será responsable de mantener la información actualizada. En este contexto, es crucial contar con una documentación detallada de activos y sistemas, abarcando elementos como equipos mecánicos, eléctricos, sistemas HVAC, iluminación, entre otros.

La recopilación de información incluirá detalles específicos para cada activo, como modelo, número de serie, fechas de instalación y especificaciones técnicas. Esta documentación resultará fundamental en la fase de operación del edificio, ya que facilitará los siguientes procesos:

Mantenimiento preventivo y planificación:

  • Se integrará información sobre los requisitos de mantenimiento preventivo para cada activo.
  • Se establecerán programas de mantenimiento basados en la información proporcionada en COBie, garantizando el funcionamiento eficiente de los sistemas y reduciendo el riesgo de fallos inesperados.

Gestión de espacios y uso del edificio:

  • Se dispondrá de información sobre la asignación de espacios y sus usos específicos.
  • Esto simplificará la gestión de cambios en la disposición de los espacios y optimizará el uso del edificio a lo largo del tiempo.

Gestión de activos en tiempo real:

  • Se emplea un sistema de gestión de activos compatible con COBie para integrar información en tiempo real sobre el estado y rendimiento de los activos.
  • Esto posibilitará una toma de decisiones más informada y respuestas rápidas ante problemas o necesidades de mantenimiento.

Conclusiones

COBie proporciona un formato estructurado para la organización y entrega de datos relacionados con la construcción y operaciones de un edificio. Este estándar facilita la interoperabilidad y conservación de información crucial a lo largo del ciclo de vida del edificio. COBie actúa como un puente entre el modelo de construcción BIM y los sistemas de gestión de mantenimiento, mejorando la consistencia y eficiencia en la gestión de activos. Su implementación en hojas de cálculo, con parámetros específicos, ofrece una estructura organizada para la documentación detallada de activos y sistemas. Con la capacidad de trabajar con software común de modelado BIM, COBie se convierte en una herramienta valiosa para optimizar el mantenimiento preventivo, la gestión de espacios y la toma de decisiones informada durante la fase operativa del edificio.

Referencias Bibliográficas

EspacioBIM. (2018, 11 de octubre). COBIE, ¿QUÉ ES COBIE? Artículo. Borja S. Ortega. https://www.espaciobim.com/cobie

Distrito WEB. (2021, 3 de septiembre). ¿Qué es COBie? ¿Y qué tiene que ver con BIM? Artículo. https://distritobim.com/que-es-cobie-y-que-tiene-que-ver-con-bim/

IBM. (2021, 3 de marzo). Datos estándar de COBie (Construction-Operations Building information exchange). Documento técnico. https://www.ibm.com/docs/es/mam/7.6.1?topic=bim-cobie-standard-data

BIM HOUSE. (s.f.). BIM for Facility Management. Página web. https://www.bimhouseglobal.com/service/cobie-extraction-from-bim-models/

Escrito por Axel David López Flores  para KONSTRUEDU.COM

Categories
BIM

BIM FORUM: Especificación del Nivel de Desarrollo (LOD) 2023.

La gestión efectiva de la información es esencial para garantizar la consistencia y precisión en proyectos de construcción. Sin embargo, la sobreproducción de información y la falta de claridad en cuanto al nivel de detalle necesario han sido desafíos recurrentes. La gestión correcta de Level of Development (LOD) y Level of Information Need (LOIN) es clave en la correcta documentación, para optimizar la colaboración y la toma de decisiones en el entorno del BIM.


Introducción 

El uso de LOD en BIM es crucial para garantizar la consistencia y la precisión en la representación digital de un proyecto de construcción, lo que facilita la colaboración entre diferentes disciplinas y etapas del ciclo de vida del proyecto. Es por eso que en los últimos años, se han lanzado libros que sirven de guías en cuanto a los requisitos que deben cumplirse en la documentación con los distintos niveles de detalle conformado por distintos tipos de información. 

Objetivo 

El objetivo es establecer el nivel de detalle de los requisitos de información, los modelos y sus características geométricas, así como la documentación alfanumérica y complementaria. Es fundamental para lograr una comprensión común para asegurar que todos los participantes del proyecto puedan comprender y aprovechar la información en cada una de las etapas. Es esencial establecer los prerrequisitos desde el inicio para que los involucrados puedan determinar la cantidad necesaria de información, diferenciándose a la que podría ser simplemente opcional.

¿Qué es un LOD?

Dentro del contexto de Building Information Modeling (BIM), “LOD” se refiere a “Level of Development” o “Level of Detail” (Nivel de Desarrollo o Nivel de Detalle, respectivamente). En este contexto, el LOD se utiliza para describir el grado de detalle y desarrollo que tiene un modelo o componente dentro del proceso de modelado de información de construcción.

Nota: la imagen muestra las características de los niveles LOD Fuente: Autoría propia.

Niveles LOD

La guía “Nivel de Desarrollo (LOD) Especificación” abarca 6 niveles, desde el 100 hasta el 500. Entre ellos, se destaca el nivel 350, que se considera un nivel intermedio. Las definiciones están basadas en la AIA (Contract Documents AIA) donde se añade el LOD 350 y el LOD 500 se enfoca únicamente a la verificación en campo, por lo que, la Especificación no desarrolla interpretaciones en este nivel. 

A continuación, se muestra su definición según la Especificación:

  • LOD 100 EI Elemento del Modelo puede representarse gráficamente en el Modelo con un símbolo u otra representación genérica, pero no satisface los requisitos para el LOD 200. La información relacionada con el Elemento del Modelo (por ejemplo, costo por pie cuadrado, tonelaje de HVAC, etc.) se puede derivar de otros elementos del modelo.
  • LOD 200 El Elemento del Modelo se representa genérica y gráficamente dentro del Modelo con cantidad, tamaño, forma, ubicación y orientación aproximadas.
  • LOD 300 El elemento del modelo, tal como está diseñado, se representa gráficamente dentro del modelo de manera que se pueda medir su cantidad, tamaño, forma, ubicación y orientación.
  • LOD 350 El Elemento del Modelo, tal como fue diseñado, se representa gráficamente dentro del Modelo de manera que se pueda medir su cantidad, tamaño, forma, ubicación, orientación e interfaces con Elementos del Modelo adyacentes o dependientes.
  • LOD 400 El elemento del modelo se representa gráficamente dentro del modelo con suficiente detalle para la fabricación, montaje e instalación.
  • LOD 500 El elemento del modelo es una representación gráfica de una condición existente o construida desarrollada mediante una combinación de observación, verificación de campo o interpolación. El nivel de precisión se anotará o adjuntará al elemento del modelo.

Los requisitos de LOD son acumulativos. Para un elemento determinado, los requisitos para cada LOD incluyen los requisitos para todos los LOD inferiores.

Nota: la imagen muestra las características de los niveles LOD Fuente: “Nivel de Desarrollo (LOD) Especificación”

ESPECIFICACIÓN DEL NIVEL DE DESARROLLO (LOD) 

El documento titulado “Nivel de Desarrollo (LOD) Especificación”, publicado por BIM Forum, es una herramienta que tiene como objetivo establecer de manera precisa el alcance y las características necesarias de los modelos. Al eliminar la ambigüedad en la creación de modelos, esta especificación establece un lenguaje común que permite a los profesionales trabajar de manera más eficiente con los productos realizados por otros, contribuyendo así a mejorar la eficiencia en los procesos colaborativos.

Nota: la imagen muestra la portada del documento Fuente: BIM Forum.

Principales Novedades 

En el mes de diciembre se realizó una actualización al documento debido a su décimo aniversario, publicándose la parte 1 para comentarios públicos, la cual trae consigo los siguientes cambios:

  • Se simplificaron los requisitos para alinearse con las necesidades del equipo de diseño y se eliminaron inconsistencias en la sección de Estructuras Especiales: Sistemas Constructivos Metálicos. Además, se llevó a cabo una actualización de los elementos relacionados con el paisaje según las pautas de la Asociación de Arquitectos Paisajistas de América (ASLA) en la sección de Mejoras del sitio.
  • Dado que es posible adjuntar información no gráfica en cualquier cantidad y grado de precisión a un elemento del modelo en cualquier LOD, se elimina la leyenda “También se podrá adjuntar información no gráfica al Elemento del Modelo” pues ya no es necesaria.
  • Se reasignan los volúmenes de reserva al LOD 100, dado que la definición de LOD 200 desde el 2022 requiere que el elemento muestre geometría reconocible. 
  • Se desarrolló una mejor definición para LOD 500, dejando claro que este LOD se aplica a elementos existentes o “construidos”, en lugar de los elementos “según lo diseñado” (La puedes encontrar en este artículo en el apartado de Niveles LOD)

Nota: La imagen muestra la descripción en diferentes niveles LOD de una estructura metálica  Fuente: Nivel de Desarrollo (LOD) Especificación

Nota: La imagen muestra actividades de paisajismo Fuente: Nivel de Desarrollo (LOD) Especificación

Otros cambios 

1. Eliminación de Ambigüedades: Se sustituyeron términos ambiguos, como “aberturas principales”, por Tamaño definido.

2. Simplificación del Modelo: Se simplificaron secciones, como la de Acabados Interiores, centrándose en el espesor en lugar del material, facilitando la definición de requisitos aplicables a todas las variantes.

3. Términos Definidos: Se añadió una sección para definir términos especializados, saltándolos en negrita en las descripciones del LOD.

4. Requisitos de LOD Claros: Las descripciones ahora solo enumeran elementos obligatorios, sin hacer referencia a elementos no obligatorios o prohibidos.

5. Organización de Descripciones Narrativas: Las descripciones se estructuraron en listas para facilitar su uso como Lista de Verificación.

6. Exclusión de Información no Geométrica en Parte I: La información no geométrica se aborda en el principio de que se puede agregar a cualquier elemento de cualquier LOD; sin embargo, no se incluye en la Parte I.

7. Eliminación de Contenido Duplicado: Se realizó una revisión para eliminar o reemplazar contenido duplicado.

La importancia de la correcta documentación 

En muchos casos, se tiende a exagerar la cantidad de información que comparten para evitar lagunas de información, lo que a menudo resulta en un exceso de información innecesaria. La ISO 19650-1 introduce el concepto de “Level of Information Need” o LOIN, que complementa el enfoque basado en el “Level of Detail” (LOD). El Level of Development (LOD) se enfoca en el detalle geométrico y físico de un modelo en diferentes etapas del proyecto, describiendo la confiabilidad y el nivel de detalle. En cambio, el Level of Information Need (LOIN) se centra en la información esencial necesaria en un momento específico para tomar decisiones. Este cambio de perspectiva busca evitar la sobreproducción de información y garantizar una comunicación más efectiva. 

Conclusiones

En resumen, el uso de niveles de desarrollo (LOD) en BIM es esencial para garantizar la coherencia y precisión en la representación digital de proyectos de construcción, facilitando la colaboración y la comprensión común entre los participantes. La “Especificación del Nivel de Desarrollo (LOD)” del BIM Forum ha sido una herramienta clave en este sentido, estableciendo requisitos precisos y mejorando la eficiencia en los procesos colaborativos. Las recientes actualizaciones, como la simplificación de requisitos y la alineación con las necesidades del diseño, demuestran el compromiso con la mejora continua. 

Referencias Bibliográficas

Editorial TEAm. (2022, 10 de marzo). LOD y LOIN en BIM: qué son y para qué se utilizan. Biblus. https://biblus.accasoftware.com/es/lod-y-loin-en-bim/

Sin autor. (s.f.). ¿Qué es el LOD en metodología BIM? BIMnD. https://biblus.accasoftware.com/es/que-es-el-lod-en-metodologia-bim/

BIM Forum. (2023, 28 de diciembre). Nivel de Desarrollo (LOD) Especificación. https://bimforum.org/2023-level-of-development-lod-specification/

________

Escrito por Axel David López Flores  para KONSTRUEDU.COM


Categories
BIM

Avances de implementación BIM en el Sector Público 2023

En la última década, la adopción de la metodología BIM ha experimentado un crecimiento significativo en América Latina marcando una transformación clave en el sector de la construcción. Se exploran los avances notables y los esfuerzos estratégicos realizados por diversos países de la región para integrar BIM en proyectos del sector público. A través de casos específicos, se examinará el impacto de la implementación de BIM en diferentes contextos latinoamericanos, así como las proyecciones y desafíos que definen la actual travesía de la región hacia la modernización y la digitalización en el ámbito de la construcción.


Introducción 

La metodología BIM continúa progresando en diversos países, evidenciando resultados significativos en la reducción de tiempos, costos y el aumento de la productividad en proyectos de construcción. En algunas regiones han decidido avanzar hacia la siguiente etapa en sus planes de adopción, con el objetivo de motivar a los profesionales del sector a implementar esta innovadora metodología. Entre las estrategias adoptadas se encuentran la promoción de licitaciones con un enfoque exclusivo en BIM para proyectos de infraestructura pública, el inicio de proyectos piloto, la creación de documentos que no solo facilitan la implementación de BIM, sino también la elaboración de guías que promueven la interoperabilidad entre diversas metodologías. Estas medidas buscan facilitar una transición más fluida y aceptada por la comunidad de constructores.

Beneficios de la metodología BIM.

En Estados Unidos reporta que redujeron los tiempos en un 7% y se logró un ahorro del 10% en costos de detección de interferencias, junto con una reducción del 80% en el tiempo para estimar costos. En el Reino Unido, se observaron ahorros del 3% en el costo total de una obra, con beneficios económicos notables durante la etapa de operación. En América Latina, especialmente en Chile, encuestas indicaron que el 64% de los usuarios experimentaron una disminución de interferencias y se estimó un aumento del 2% en la productividad laboral con el uso de BIM. 

Por esta razón, varios países están optando por llevar a cabo sus proyectos mediante esta metodología, destacando la eficiencia en la utilización de recursos como su principal atractivo. Es crucial conocer el estado actual de la implementación de BIM en el sector público, el cual se detalla a continuación en algunos países de latinoamérica.

Avances en el sector público 

Argentina 

En Argentina, el Gobierno Nacional, el Ministerio de Obras Públicas y el Sistema de Implementación BIM (SIBIM) son los principales responsables de llevar a cabo el proceso de adopción de esta metodología. Durante el año 2023, se llevó a cabo el desarrollo de documentos, plantillas y guías sobre formatos interoperables, así como la ejecución de proyectos piloto de arquitectura e infraestructura. Además, se realizaron licitaciones bajo la metodología BIM, siendo considerado como un caso de éxito. 

Se contempla que para el 2024 llevar a cabo el desarrollo de un observatorio BIM y concretar el desarrollo del visor IFC (visor de modelos) para proyectos públicos.

Nota: Biblioteca SIBIM. Fuente: Ministerio de Obras Públicas. 

Algunas licitaciones con metodología BIM realizadas desde octubre 2022 hasta la fecha:

  • Hospital Dr Rizo Esparza de 5.000 m2 – Angaco
  • Hospital Dr Stella Molina de 3.500 m2 – San Martin
  • Hospital Los Berros de 1890 m2 – Sarmiento (Apertura de sobres, dispersión del 3% entre los tres oferentes)
  • Comisaría del Barrio Sierras de Marquesado de 813 m2 – Rivadavia
  • Comisaría del Barrio Las Pampas de 790 m2 – Pocito

Nota: Hospital de Angaco DR. Alfredo Rizo Esparza, Primer hospital modelado en BIM (Argentina)  y Licitado con requerimientos BIM. Fuente: ZIGURAT

Colombia 

En Colombia, la implementación de esta metodología recae en la Presidencia de la República, la Vicepresidencia de la República y el Departamento Nacional de Planeación. En el 2022 se desarrolló la “Guía de Infraestructura Vial Desarrollo y de Buenas Prácticas para la formulación de estrategias BIM a nivel organizacional”, y la “Guía de aplicación de estándares para proyectos públicos de transporte”. 

Los objetivos definidos por Colombia en los siguientes años son los siguientes :

  • Adoptar un marco BIM colaborativo común para todos los sectores de infraestructura, que incluya orientaciones y requisitos sectoriales específicos.
  • Lograr, para el año 2026, un mínimo del 10 %, en promedio, de ahorro de costos en proyectos de infraestructura pública desarrollados con BIM.
  • Implementar el uso del BIM en proyectos estratégicos, para desarrollar y entregar información digitalmente mediante un entorno de datos común.

Nota:  El Hospital de Bosa fue una de las obras donde se implementó la tecnología BIM. El proyecto entrará en funcionamiento en diciembre de 2023 y exigió más de US$113 millones en inversión. BIM. Fuente: FORBES 

Perú

En Perú, los encargados de llevar a cabo la implementación de BIM son: Gobierno Nacional, Despacho Presidencial, Presidencia del Consejo de Ministros, Ministerio de Economía y Finanzas, Viceministerio de Economía, Dirección General de Programación Multianual de Inversiones, Dirección de Políticas y Estrategias de la Inversión Pública, y el Equipo del Plan BIM Perú.

Nota: Página web del Plan BIM Perú  . Fuente: Ministerio de Economía y Finanzas. 

En Perú, los esfuerzos de adopción de BIM se centraron en la creación de estándares, requisitos de BIM y la ejecución de proyectos piloto con la aplicación de la metodología BIM. Además, se inició la estrategia de formación de capital humano para el uso de BIM, resultando en el lanzamiento de la ‘Guía Técnica BIM para Edificaciones e Infraestructura’ y la publicación de las normas técnicas peruanas NTP ISO 19650-1:2021 y NTP-ISO 19650-2:2021.

Nota: Portada de la guía Técnica BIM . Fuente: investinperu

Durante el 2023 se realizó la publicación de las bases para la selección de entidades o empresas públicas que tendrán acompañamiento en la adopción progresiva de BIM en las fases del ciclo de inversión, aprobadas mediante la Resolución Directoral n.º 0001-2023-EF/63.01. y se tiene planificado la publicación de un documento en que se sistematizan las características mínimas de software, hardware, CDE y otros recursos tecnológicos necesarios para la adopción de BIM.

Para el 2025, se espera lograr la implementación de BIM en proyectos del Gobierno nacional y de Gobiernos regionales en tipologías seleccionadas.

Chile

En chile los encargados de la implementación BIM son:  El Ministerio de Economía, CORFO | Agencia de productividad, la Gerencia de capacidades tecnológicas y Planbim. 

Durante el 2022 se alcanzaron los siguientes hitos: Lanzamiento del Observatorio BIM de licitaciones públicas, lanzamiento del Reporte del Observatorio BIM de Educación Superior y  el desarrollo de la Plataforma Automatizada de Revisión de Proyectos para MINVU, PARPro y se quiere incorporar BIM en la Dirección de Obras Municipales (DOM) en línea para el 2025.

Nota: Portada del Primer reporte del Observatorio BIM. Fuente: Planbim

México 

En México, la implementación de la metodología BIM está a cargo de la Secretaría de Hacienda y Crédito Público, pero es el sector privado quien lidera la promoción de BIM en contratos públicos. Con este enfoque, México busca redefinir los objetivos de la implementación y su estrategia, así como fomentar la colaboración con BIM Task Group México.

Se han iniciado proyectos piloto y programas de capacitación, como el Taller BIM para Gobierno y el Seminario Internacional PIARC. Además, se prevé la adopción de la norma ISO 19650-2 por parte del Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C. (ONNCCE). En paralelo, se planea una reforma a la Ley de Obra Pública y Servicios para hacer obligatoria la integración de tecnología en los procesos de construcción, buscando mejorar la eficiencia y transparencia en proyectos de infraestructura.

Nota: Portada de la Guía de adopción BIM en gobiernos estatales y municipales desarrollada por BIM Task Group.  Fuente: BIM Task Group.

Conclusiones 

Se resalta el progreso significativo en la adopción de la metodología BIM en el sector público de América Latina. Se evidencian beneficios notables, como la reducción de tiempos y costos, así como mejoras en la eficiencia y productividad laboral. Se destacan casos de éxito en licitaciones y proyectos piloto, junto con metas ambiciosas de adopción de BIM en diferentes países. Además, se observa un impulso hacia la creación de estándares, la formación de capital humano y la colaboración entre el sector público y privado. En conjunto, estos esfuerzos reflejan un compromiso regional hacia la modernización y transformación digital en el ámbito de la construcción y la infraestructura.

Referencias Bibliográficas

Dominguez, S. (2023, May 29). Enfoque regional: avances del BIM en América Latina para el cierre de brechas. Lima. Andina. https://andina.pe/agencia/noticia-enfoque-regional-avances-del-bim-america-latina-para-cierre-brechas-941774.aspx

Sánchez, A. L. (2023, August 16). Metodología BIM en la Obra Pública, Argentina. ZIGURAT. https://www.e-zigurat.com/es/blog/implementacion-bim-en-la-obra-publica-argentina/

Escobar, S. (2023, May 19). Uso de tecnología sería obligatorio en los procesos de construcción en México. El Economista. https://www.eleconomista.com.mx/econohabitat/Uso-de-tecnologia-seria-obligatorio-en-los-procesos-de-construccion-en-Mexico-20230518-0089.html

Forbes Staff. (2023, October 18). Realidad aumentada, IA y IoT para construir hospitales, puentes y autopistas: la millonaria apuesta de la interventoría 4.0. Forbes. https://forbes.co/2023/10/18/tecnologia/tecnologias-para-construir

Estudio ESE. (2023, June 6). Situación BIM en América Latina en 2023. ESE. https://estudioese.com.uy/situacion-bim-en-america-latina-en-2023-7?nid=61

Red BIM de Gobiernos Latinoamericanos. (2023). Estrategias BIM de los países miembros de la Red BIM de Gobiernos Latinoamericanos (Versión 1, Diciembre 2023).

Categories
BIM Gerencia de la Construcción Innovación y Transformación Digital

Tendencias de la ingeniería y la construcción para el 2024

La tecnología ha avanzado a pasos agigantados, y los arquitectos e ingenieros deben adoptar las nuevas herramientas que el futuro nos presenta. En este artículo, se exploran las tendencias hacia las cuales se encamina la industria de la construcción, y se destaca la importancia de que los profesionales den la bienvenida a estos avances para estar preparados en el día de mañana.


Introducción 

Las tendencias clave en el panorama actual se centran en la implementación de la metodología BIM en el sector público, la robótica, la inteligencia artificial y la construcción sostenible. Desde drones y robots en el sitio hasta la integración de algoritmos inteligentes para una planificación más eficiente, estas tecnologías están transformando la forma en que concebimos y llevamos a cabo los proyectos. Al mismo tiempo, la construcción sostenible se posiciona como objetivo clave, donde la eficiencia energética y el uso de materiales respetuosos con el medio ambiente se convierten en criterios fundamentales. Estas tendencias están marcando el rumbo hacia una construcción más inteligente, sostenible y eficiente.

BIM en el sector público 

En el año 2024, se anticipa que los países de América Latina logren alcanzar una serie de hitos en el marco del plan de adopción de la metodología BIM, la cual ha sido desplegada y propuesta por cada uno de ellos. Estos hitos constituyen una parte integral de una estrategia elaborada que se ha venido gestando durante varios años. En algunos casos, la ejecución de esta estrategia abarca más de una década, por lo que para el año 2024 se espera que algunos países estén en condiciones de desarrollar proyectos piloto. Esto marcará el inicio de una fase fundamental dentro de la implementación de la estrategia.

Nota: Portada del documento de “Estrategias BIM de los países miembros de la Red BIM de Gobiernos Latinoamericanos“. Fuente: REDBIM. 

Se enlistan los Hitos para el 2024: 

  • En Argentina, se tiene proyectado llevar a cabo los siguientes objetivos para el 2024: Desarrollo de un observatorio BIM y concretar el desarrollo del visor IFC (visor de modelos) para proyectos públicos.
  • En Brasil, se proyecta llevar a cabo los siguientes objetivos para el 2024. El desarrollo de normativa, la generación de información estandarizada y la realización de proyectos piloto. Estos últimos se planea que estén en fase de obra para el 2024.
  • Colombia busca establecer los requerimientos de uso de BIM en el 35 % al 50 % de los proyectos de orden nacional o cofinanciados por el Gobierno nacional para 2024.
  • Costa Rica quiere desarrollar la librería nacional BIM para el 2024.
  • México busca la redefinición de los objetivos de la implementación y su estrategia, así como la colaboración con BIM TASK Group México.
  • En Perú, los planes abarcan desde el 2024 hasta el 2025. Se pretende aprobar un marco regulatorio para la aplicación de BIM en el sector público y la articulación con sistemas administrativos. Además, se busca crear una plataforma tecnológica habilitante para sectores priorizados del Gobierno nacional.
  • Uruguay busca llevar a cabo el desarrollo de proyectos piloto en obras viales y de arquitectura para el 2024.
  • En Chile, se quiere incorporar BIM para la Dirección de Obras del Municipales (DOM)  en línea para el 2025.

Implementación de la Inteligencia artificial en el diseño y planeación 

La IA tiene el potencial de optimizar cada etapa del ciclo de vida de una construcción, desde la planificación hasta el mantenimiento, mejorando la eficiencia y la toma de decisiones.

En la fase de diseño, la IA facilitará la creación de modelos más precisos y eficientes, ayudando a los arquitectos y diseñadores a generar soluciones innovadoras. Durante la construcción, algoritmos avanzados podrían prever y mitigar riesgos, y mejorar la programación de tareas complejas. 

Con base en lo anterior, a finales del 2023, Autodesk ha integrado en sus software una herramienta que utiliza la inteligencia artificial para facilitar y optimizar los procesos de diseño. Este enfoque se evidencia, por ejemplo, en Revit, que incorpora diseño generativo, o en Autodesk Forma, que emplea la inteligencia artificial para evaluar las condiciones naturales de los entornos en los que se llevará a cabo el proyecto. Esto permite la toma de decisiones informadas en las primeras etapas del proceso de planificación y diseño. La inteligencia artificial está potenciando significativamente las herramientas y, por ende, los proyectos en los que se aplican.

Nota: La imagen muestra el diseño generativo en Revit. Fuente: Autodesk 

Nota: La imagen muestra un análisis de Autodesk Forma. Fuente: Autodesk 

Si deseas obtener más información sobre la inteligencia artificial implementada por Autodesk, te invitamos a consultar el siguiente artículo. https://konstruedu.com/es/blog/novedades-de-autodesk-university-2023

Contratos colaborativos 

Los contratos colaborativos buscan la cooperación y la toma de decisiones conjunta. La idea central es compartir riesgos y recompensas, adoptar enfoques de gestión de proyectos integrados y resolver disputas de manera colaborativa. Se busca mejorar la eficiencia, fomentar la innovación y construir relaciones más sólidas entre las partes involucradas.  En los últimos años, este tipo de contratos han sido tendencia en la industria de la construcción y se espera que su implementación aumente en los años siguientes. 

Nota: Se muestra la portada de una guía para contratos NEC4   Fuente: PLANIFICACIÓN GMH

Los contratos NEC (New Engineering Contract) son una serie de contratos estándar utilizados principalmente en la industria de la construcción y la ingeniería. Estos contratos se caracterizan por fomentar la colaboración y la gestión eficiente de proyectos, promoviendo la transparencia y la comunicación entre las partes involucradas.

En los Juegos Panamericanos Lima 2019, se adoptaron contratos NEC asesorados por el Gobierno inglés, destacando su enfoque innovador y la creación del “Fast Track” (modalidad de contratación en el que el diseño del proyecto y la ejecución de la obra se realizan casi en forma paralela). Este método prioriza la contratación de personal capacitado para un proceso integrado, reduciendo costos al enfocarse en la ingeniería del proyecto. La modalidad NEC alinea los intereses de todas las partes para buscar la disminución de costos y una mejor eficiencia. Esa primera experiencia de Lima 2019 marcó un hito importante y a partir de los buenos resultados cada vez más se está aplicando este tipo de contratos en la ejecución de proyectos de infraestructura de Perú y de lo países de LATAM, por lo que en el 2024 y próximos años cada vez más cobrará protagonismo en la gestión contractual de los proyectos.  

Si deseas obtener más información sobre los contratos NEC, te invitamos a consultar el siguiente artículo. https://konstruedu.com/es/blog/que-son-los-contratos-nec4

RV, RA y RM aplicadas en la construcción 

La realidad virtual (RV), realidad aumentada (RA) y realidad mixta (RM) están siendo implementados en diversas etapas de la construcción, desde el diseño hasta el mantenimiento. Arquitectos y diseñadores emplean la RV para comprender modelos virtuales tridimensionales, permitiendo una visualización profunda y la identificación temprana de problemas de diseño. La RA se utiliza en el sitio de construcción, superponiendo información digital, como planos y modelos, sobre el entorno real, facilitando la comprensión y ejecución de tareas. Se espera que para el año 2024 más empresas adopten esta forma de visualizar sus proyectos. 

Nota: Se muestra un ejemplo demostrativo del software de Luminion   Fuente: Luminion 

La RA, por otro lado, ofrece instrucciones directamente en el campo de visión de los trabajadores, simplificando tareas complejas. Además, en inspección y mantenimiento de edificaciones, la RA y la RM permiten a los profesionales recibir información en tiempo real sobre el estado de las estructuras y visualizar representaciones digitales superpuestas en equipos reales. Estas herramientas inmersivas mejoran la eficiencia, la toma de decisiones informada y en el 2024, el impacto de estas tecnologías en la industria aumentará aún más en la gestión de riesgos. 

Nota: Se muestra el Software de Doxel para inspeccionar la calidad de las instalaciones  Fuente: Doxel. 

Robótica aplicada en la construcción 

La robótica aplicada a la construcción está introduciendo tecnologías automatizadas que mejoran la eficiencia, la seguridad y la precisión en diversas tareas. Desde drones utilizados en inspecciones aéreas y monitoreo de proyectos hasta robots terrestres que realizan tareas de transporte y manipulación de materiales en el sitio de construcción, la robótica está transformando la forma en que se llevan a cabo las operaciones. La impresión 3D mediante robots es una técnica innovadora para construir estructuras complejas de manera eficiente. Además, robots soldadores, de ensamblaje y excavadoras autónomas están siendo empleados para automatizar procesos específicos y mejorar la calidad de las construcciones. La robótica también desempeña un papel clave en la inspección y mantenimiento de estructuras, utilizando robots especializados para acceder a lugares peligrosos o de difícil acceso. Sin duda alguna, para el 2024 la robótica tendrá un impacto significativo en el sector de la construcción.

Nota: Hadrian X, el robot australiano que construyó en tres días la estructura de una casa Fuente: El País. 

Impresión 3D y fabricación digital 

La impresión 3D y la fabricación digital están potenciando a la industria de la construcción al introducir métodos avanzados y eficientes. La impresión 3D permite la construcción rápida de estructuras mediante la deposición de capas de materiales, destacando por su eficiencia, capacidad de personalización y reducción de costos. Por otro lado, la fabricación digital utiliza tecnologías computarizadas para diseñar y producir componentes de construcción con precisión milimétrica, optimizando diseños y permitiendo la automatización.

Ejemplos que destacan son la impresión 3D en su totalidad de una casa de dos pisos construida en Texas y la inauguración de una impresora para la construcción en Chile.

Nota: La imagen muestra el primer edificio impreso en 3D en Texas Fuente: El País.

Nota:  Universidad del Bío-Bío inaugura primera impresora industrial para la construcción aditiva en Latinoamérica Fuente: CDT. 

Construcción sostenible y modular 

La construcción sostenible se centra en minimizar el impacto ambiental y optimizar el uso de recursos en la construcción y vida útil de los edificios. Este enfoque aborda aspectos económicos, sociales y ambientales, destacando características clave como la eficiencia energética, el uso de materiales sostenibles, la gestión del agua, la calidad del aire interior, la selección de ubicaciones y la construcción de estructuras duraderas. Se busca un equilibrio sostenible considerando múltiples factores.

Nota: The Crystal. Londres, Inglaterra. Fue el primer edificio del mundo en recibir la certificación LEED (Liderazgo en Energía y Diseño Ambiental)  Platinum y la calificación “Sobresaliente” del BREEAM. Fuente: Amarillo. 

La construcción modular implica la fabricación de componentes en entornos controlados fuera del sitio, ensamblados luego en el lugar de construcción. Ofrece eficiencia de tiempo al permitir la simultaneidad de la fabricación y el ensamblaje, reduce residuos al realizar la producción en condiciones controladas, garantiza una calidad controlada en la fabricación y proporciona flexibilidad en el diseño. Además, la construcción modular puede alinearse con principios sostenibles al reducir desperdicios y optimizar el uso de materiales.

Nota: Habitat 67 en Montreal. Su construcción fue un verdadero ejemplo de construcción modular. Fuente: Neoblock 

Armaduras Industriales Prefabricadas

La prefabricación en elementos de construcción con el armado de acero es una técnica eficiente que transforma el proceso constructivo tradicional. Consiste en la fabricación de componentes estructurales, como columnas, vigas o paneles, en instalaciones industriales controladas, antes de su transporte y montaje en el lugar de construcción, utilizando la metodología BIM.  

Nota: La imagen muestra una armadura prefabricada aplicada en el edificio Pacific Ocean Tower  Fuente: TSC Innovation. 

La soldadura y/o electrosoldadura se lleva a cabo de acuerdo con las normativas, y estos elementos son fabricados en instalaciones industriales con certificación según la norma. Son aptos para su uso en obras con control de ejecución, eliminando la necesidad de soldadura en el lugar de la construcción.

Conclusiones 

El futuro de la construcción se transforma mediante la integración de tecnologías como BIM, la inteligencia artificial, la realidad aumentada, la robótica y la construcción sostenible. Desde el diseño hasta el mantenimiento, la inteligencia artificial optimiza la eficiencia, mientras que la realidad aumentada y mixta impulsan la visualización y la toma de decisiones informada. La robótica, con aplicaciones que van desde la construcción autónoma hasta la inspección y mantenimiento,, al igual que la impresión 3D y la fabricación digital, que ofrecen métodos eficientes y personalizados. La construcción sostenible y modular destaca como enfoque clave para la optimización de recursos y la reducción del impacto ambiental. En conjunto, estas tendencias definen un panorama más rápido, eficiente y sostenible en la construcción para el 2024.

Referencias Bibliográficas

1. DELMAQ. (s.f.). Tendencias de la industria de la construcción para el 2024.

https://delmaq.com.py/industria-de-la-construccion-para-el-2024/

2. Asidek. (2023, 13 de diciembre). Tendencias tecnológicas en arquitectura y construcción para 2024. AUTODESK.

https://www.asidek.es/tendencias-tecnologicas-arquitectura-construccion-2024/

3. Tezanos, M. J. de. (Productor). (2024). Tendencias BIM para 2024 (Episodio 105). BIM ONLINE.

https://www.bimonlineuy.com/podcast/tendencias-bim/

4. Guimaraes, L. (2013, 30 de noviembre). Tendencias de la construcción para 2024. CLA.

https://www.construccionlatinoamericana.com/news/tendencias-de-la-construccion-para-2024/8033454.article#:~:text=Uno%20de%20los%20avances%20que,hormig%C3%strB3n%20de%20bajo%20impacto%20ambiental.

5. Doxel. (2018, 23 de enero). Introducing Artificial Intelligence for Construction Productivity.

https://medium.com/@doxel/introducing-artificial-intelligence-for-construction-productivity-38a74bbd6d07

6. Luminion. (2022, 22 de diciembre). Realidad virtual en la arquitectura. Visualiza tus diseños con las gafas Oculus Quest.

Realidad virtual en la arquitectura. Visualiza tus diseños con las gafas Oculus Quest

7. El País. (2020, 22 de julio). Un robot australiano construye la estructura de una casa en tres días y medio.

https://elpais.com/videos/2020-07-22/un-robot-australiano-construye-la-estructura-de-una-casa-en-tres-dias-y-medio.html

8. El País. (2023, 15 de enero). Texas construye el primer edificio impreso en 3D.

https://elpais.com/internacional/2023-01-15/texas-construye-el-primer-edificio-impreso-en-3d.html

9. Amarillo. (2021, 9 de abril). Diez proyectos de construcción sostenible del mundo.

https://amarilo.com.co/blog/verde/diez-proyectos-de-construccion-sostenible-del-mundo

10. NEOBLOCK. (2016, 5 de septiembre). Las 5 construcciones modulares más impresionantes.

https://neoblockmodular.com/5-construcciones-modulares-impresionantes/

11. Sanfulgencio Tomé, J. (2023, 17 de abril). ¿Puede la inteligencia artificial (IA) diseñar una casa? ARREVOL.

https://www.arrevol.com/blog/puede-la-inteligencia-artificial-ia-disenar-una-casa-chatgpt-stable-diffusion

ERSIGROUP. (s. f.). Armaduras Industriales Prefabricadas.

https://www.ersigroup.com/es/armaduras-industriales-prefabricadas

BIMGOB LATAM. (2023, 15 de diciembre). Estrategias BIM de los países miembros de la Red BIM de Gobiernos Latinoamericanos.

https://redbimgoblatam.com/biblioteca/documentos/

Construcía. (2021, 18 de noviembre). ¿Qué son los contratos colaborativos?

https://www.construcia.com/noticias/contratos-colaborativos/

CDT. (2023, 15 de diciembre). Universidad del Bío-Bío inaugura primera impresora industrial para la construcción aditiva en Latinoamérica.

de la Piedra, A. (2019, noviembre 18). Los contratos NEC. Estudio Muñiz.

https://www.cdt.cl/universidad-del-bio-bio-inaugura-primera-impresora-industrial-para-la-construccion-aditiva-en-latinoamerica/

________

Escrito por Axel David López Flores  para KONSTRUEDU.COM

Categories
BIM Inteligencia Artificial

Aplicaciones de la inteligencia artificial (I.A.) en el diseño y construcción

La integración de la inteligencia artificial en la construcción y el diseño no solo mejora la eficiencia, sino que también puede conducir a diseños más sostenibles y rentables. Conoce cómo algoritmos de aprendizaje automático, análisis de datos geoespaciales y sistemas de visión por computadora se entrelazan para impulsar la eficiencia en la toma de decisiones y la ejecución de proyectos. Desde la generación automatizada de diseños arquitectónicos hasta la optimización estructural y la gestión de proyectos.


Introducción 

La integración de la inteligencia artificial I.A. en el ámbito de la construcción y el diseño ha revolucionado la forma en que abordamos los proyectos. Desde el diseño asistido por computadora (CAD) hasta la gestión de proyectos y la construcción misma, la IA se ha vuelto una herramienta invaluable para aumentar la eficiencia y la precisión. Los sistemas de IA pueden analizar grandes conjuntos de datos para una mejor información estratégica, optimizar, planificar y realizar simulación de proyectos, y mejorar la toma de decisiones en tiempo real. 

Además, la  I.A. aplicada en la automatización de la maquinaria y los procesos de diseño, han permitido acelerar los ciclos de construcción y fomentar la innovación en el diseño arquitectónico. A medida que la IA continúa evolucionando, se espera que su impacto en la industria de la construcción crezca y proporcione soluciones más eficientes y sostenibles.

Aplicaciones 

La inteligencia artificial  está desempeñando un papel cada vez más importante en el ámbito de la construcción y el diseño. Aquí hay algunas formas en que la IA se está utilizando en este sector.

Generación de diseños arquitectónicos

Autodesk ha desarrollado el proyecto “Generative Design,” que utiliza inteligencia artificial para explorar y generar múltiples opciones de diseño arquitectónico basadas en parámetros y restricciones específicas. 

Revit 

El diseño generativo en Autodesk Revit puede generar alternativas de diseño basadas en sus objetivos, limitaciones y entradas para brindarle opciones de mayor rendimiento para la toma de decisiones basada en datos.

Nota: La imagen muestra el diseño generativo en Revit. Fuente: Autodesk 

AutoCAD

En el ámbito de AutoCAD, la inteligencia artificial se emplea para agilizar el proceso de diseño, interpretando tanto marcas manuscritas como digitales. Además, identifica la intención del usuario y sugiere acciones contextuales para facilitar la incorporación de cambios de manera eficiente.

Nota: La imagen muestra la Sustitución de bloques inteligentes en AutoCAD. Fuente: Autodesk 

Diseño estructural optimizado

La empresa británica Arup ha utilizado algoritmos de aprendizaje automático para optimizar el diseño estructural de edificios. El sistema analiza múltiples variables para encontrar soluciones que mejoren la eficiencia y la resistencia de las estructuras.

Nota: se muestran imágenes del Centro Cultural de Suzhou . Fuente: Arup

El Centro Cultural de Suzhou tiene luces largas y está ubicado en una zona sísmica. Para cumplir con los requisitos de seguridad, se llevaron a cabo análisis numéricos detallados para identificar rutas de carga alternativas y proporcionar numerosas soluciones novedosas para los edificios del museo, IMAX y la ópera.

Análisis de entorno 

El software Autodesk Forma proporciona un análisis rápido del viento, ruido y la energía operativa para que pueda tomar decisiones inteligentes de planificación y diseño en las primeras etapas que mejoren los resultados.

Nota: La imagen muestra un análisis de Autodesk Forma. Fuente: Autodesk 

Gestión de proyectos y planificación:

La empresa Procore utiliza inteligencia artificial para mejorar la gestión de proyectos de construcción. Su plataforma utiliza aprendizaje automático para prever posibles retrasos, gestionar riesgos y mejorar la eficiencia en la ejecución de proyectos.

Nota: Las imágenes muestran el software Procore y las instalaciones Aireko. Fuente: Procore

A través de Procore, Aireko  (SISTEMAS DE AIRE COMPRIMIDO AIREKO S.A. de C.V). centralizó toda la información de sus obras y pudo conectar a 200 profesionales de la construcción, dando  visibilidad a la información relacionada a los proyectos de construcción y reduciendo fallas de comunicación. 

Simulaciones de tráfico

Aimsun Live, un sistema de apoyo a la decisión basado en la simulación de vehículos, complementado con un sistema de análisis predictivo, para la previsión y gestión del tráfico en tiempo real. utilizado para la simulación 

Nota: Las imágenes muestran el software Aimsun Live utilizado en la ciudad de Singapur  Fuente: Aimsun.

La ciudad de Singapur ha implementado sistemas de simulación de tráfico basado en inteligencia artificial para optimizar la gestión del flujo vehicular, incluido Aimsun Live. Estos sistemas ayudan a prever congestiones y mejorar la planificación urbana. 

Mantenimiento predictivo de infraestructuras

La compañía IBM ha desarrollado soluciones de mantenimiento predictivo que utiliza inteligencia artificial para analizar datos sensoriales y prever posibles fallas en puentes y carreteras, permitiendo una programación de mantenimiento más eficiente.

Nota: Las imágenes muestran el software IBM Maximo que es utilizado en Puente del Gran Belt  Fuente: IBM

Detección de defectos en la construcción

Doxel 

La startup Doxel emplea robots equipados con cámaras y sensores que utilizan visión por computadora e inteligencia artificial para inspeccionar y detectar defectos en tiempo real durante la construcción de edificios.

Nota: La imagen muestra un ejemplo de utilización del software Fuente: Doxel

Construction IQ

Por otro lado, Construction IQ de Autodesk  hace uso de la inteligencia artificial para anticipar, prevenir y gestionar los riesgos asociados a la construcción, abarcando aspectos como la calidad, la seguridad, los costos y el cronograma, con el objetivo de optimizar la gestión de proyectos

Nota: La imagen muestra el software Construction IQ  Fuente: Autodesk 

Análisis de datos geoespaciales

Google Earth Engine

Google Earth Engine utiliza análisis de datos geoespaciales con técnicas de aprendizaje automático para monitorear cambios en el uso del suelo, deforestación y otros fenómenos que pueden afectar la planificación urbana y rural.

Nota: Las imágen el sistema de Earth Engine  Fuente: Google Earth 

InfoDrainage

En el caso de InfoDrainage, la herramienta de Machine Learning Deluge proporciona orientación sobre la ubicación más adecuada para estanques de retención y pantanos, contribuyendo a prevenir o mitigar los impactos de eventos hídricos adversos.

Nota: La imagen muestra un ejemplo de utilización del software InfoDrainage Fuente: Autodesk 

Conclusiones 

La inteligencia artificial se está integrando en diversas áreas de la ingeniería civil y la arquitectura, proporcionando soluciones innovadoras y mejorando la eficiencia en la toma de decisiones y la ejecución de proyectos. Estos avances no solo aumentan la eficiencia y la sostenibilidad, sino que también contribuyen a un diseño más inteligente y adaptativo en el desarrollo de infraestructuras y entornos urbanos.

Referencias Bibliográficas

Autodesk,(s.f.), Generative design for Architecture, Engineering & Construction Recuperado de: https://www.autodesk.com/solutions/generative-design/architecture-engineering-construction

Arup,(s.f.), Diseño de amplias cintas metálicas para albergar el Centro Cultural de Suzhou . Recuperado de:https://www.arup.com/projects/suzhou-cultural-centre

Procore,(s.f.), Estandarizar la organización de la información . Recuperado de:https://www.procore.com/es/casos-de-exito/aireko

Aimsun, (s.f.), Singapur: Prueba tecnológica para la simulación y predicción del tráfico en tiempo real . Recuperado de: https://www.aimsun.com/es/casos-de-estudio-aimsun-live/singapur-prueba-tecnologica-de-simulacion-y-prediccion-de-trafico-en-tiempo-real/

IBM, (s.f.), Software y soluciones de gestión de activos de infraestructura. Recuperado de:https://www.ibm.com/mx-es/business-operations/infrastructure-asset-management

Doxel, (s.f.), Automated construction progress tracking. Recuperado de: https://doxel.ai/

Google earth engine, (s.f.), Una plataforma a escala planetaria para análisis y datos de ciencias de la Tierra. Recuperado de: https://earthengine.google.com/

Autodesk, (Noviembre 2023), Presentamos Autodesk AI para diseño y creación. Recuperado de:https://blogs.autodesk.com/latam/2023/11/27/presentamos-autodesk-ai-para-diseno-y-creacion

Autodesk, (2024), Funciones clave de AutoCAD 2024. Recuperado de: https://www.autodesk.es/products/autocad/features

Autodesk, (2024), Autodesk BIM 360 ConstructionIQ. Recuperado de: https://help.autodesk.com/view/BIM360D/ESP/?guid=BIM360D_Insight_About_Construction_IQ_html

Autodesk, (s/f), Autodesk InfoDrainage: cree diseños detallados de desagües sostenibles. Recuperado de: https://www.autodesk.es/products/infodrainage/overview?term=1-YEAR&tab=subscription

Autodesk, (s/f), Autodesk Forma: software basado en la nube para la planificación y el diseño en las fases iniciales. Recuperado de:  https://www.autodesk.es/products/forma/overview?term=1-YEAR&tab=subscription

________

Escrito por Axel David López Flores  para KONSTRUEDU.COM


Categories
BIM

Adopción BIM en Perú

La metodología BIM (Building Information Modeling) es un claro ejemplo de cómo las tecnologías cambian y evolucionan con el tiempo. A lo largo de décadas, se ha estado inmerso en un proceso constante de aprendizaje y mejora de los procesos, todo con el objetivo de aumentar la productividad, simplificar tareas que solían ser complicadas y transformar la forma en que se conciben y ejecutan proyectos de construcción. Este cambio continuo brinda la oportunidad de desplegar todas las habilidades y destacarse en un entorno en constante evolución. ¡Continúa leyendo!


Introducción 

En el ámbito tecnológico y la construcción, la adopción de BIM ha representado un desafío para Latinoamérica. Esto se debe a la resistencia al cambio y al desconocimiento de sus beneficios. No obstante, ha actuado como un catalizador para aquellos visionarios que saben aprovechar la naturaleza del cambio.

En este artículo, se presentan una serie de estadísticas que proporcionarán al lector herramientas y una visión amplia de la situación de la adopción de BIM en el Perú. De esta manera, el lector podrá conocer las posibilidades que existen, las que tiene a su alcance y cómo encaminar su futuro profesional.

BIM en LATAM 

En América Latina, la adopción de BIM está influenciada por factores como legislación, proyectos de infraestructura y aceptación por parte de empresas y profesionales. Chile y Brasil han avanzado significativamente en su implementación, mientras que en otros países como Perú, Colombia, México, Argentina, Uruguay y Costa Rica, se encuentra en etapas iniciales.

La implementación del Plan BIM Perú como medida política para acelerar su adopción, que se puso en marcha en el año 2019 con un plazo establecido hasta 2030, ha logrado que, hasta la fecha, Perú se posicione entre los 5 países más avanzados de América Latina en la adopción de BIM, según el Banco de Desarrollo de América Latina.

BIM en Perú

La Pontificia Universidad Católica de Perú (PUCP) ha llevado a cabo un estudio cada tres años a partir de 2017 para evaluar los niveles de adopción de BIM en proyectos de construcción. En 2017, el nivel era del 25%, en 2020 aumentó al 39%, y en el tercer estudio de adopción BIM correspondiente al año 2023, se realizaron encuestas a 211 de los 855 proyectos de construcción registrados durante el cuarto trimestre de 2022 en la región de Lima, Perú. Se observa que de los 211 proyectos encuestados, solo el 36% (75) de ellos hizo uso de la metodología BIM en alguna etapa del proyecto.

Gráfico 1. Nivel de adopción BIM en edificaciones Urbanas en Lima 2023.

Fuente: PUCP. “Tercer estudio de adopción BIM en Proyectos de Edificación, Lima”. 2023

Como se puede apreciar, se ha experimentado un ligero descenso en la velocidad de adopción, disminuyendo un 3% en comparación con el segundo estudio. En contraste, en Chile, dentro de Latinoamérica, se observa un liderazgo en términos de adopción, ya que la Comisión Interministerial BIM (CIBIM) informa que el 68% de los proyectos en el país emplea esta metodología en su desarrollo.

Características de proyectos que han adoptado BIM

Dentro de los proyectos que realmente implementaron BIM, no se hizo de manera integral, sino que se aplicó en momentos específicos y bajo ciertas condiciones. Los proyectos de gran magnitud son los que principalmente emplearon BIM, mientras que en los proyectos de menor alcance, que son la mayoría, no se utilizó esta tecnología debido a una serie de factores que se detallarán más adelante.

Las empresas de mayor tamaño, que cuentan con una plantilla de entre 50 y 200 empleados, son las que incorporan BIM en sus proyectos. Estos proyectos suelen ser más complejos, con dimensiones que varían entre 10,000 m2 y 20,000 m2 de construcción, y constan de entre 12 y más de 21 pisos. Según el tercer estudio sobre la adopción de BIM en proyectos de construcción en Lima, se observó que el 31% de estos proyectos utilizó BIM en la etapa de Anteproyecto, el 61% lo aplicó en el diseño, y el 71% lo utilizó en la etapa de construcción. Los sectores de vivienda masiva, oficinas, colegios y hoteles son los que más frecuentemente implementan BIM.

Gráfico 2. Etapas del proyecto donde se aplicó BIM 

Nota: La gráfica muestra las etapas del proyecto en las que se utilizó BIM. Fuente: “Tercer estudio de adopción BIM en Proyectos de Edificación, Lima”. 2023

Especialidades y Software más usados a través de la vida del  Proyecto

De los proyectos que usaron BIM, la Arquitectura y la Estructura son las especialidades que se modelaron el 99% de las veces, le siguen las instalaciones sanitarias, eléctricas y mecánicas, y por último, el modelado del acero de refuerzo. 

Gráfico 3. Especialidades Modeladas 

Nota:  La gráfica muestra el porcentaje de modelación de las especialidades en los proyectos . Fuente: “Tercer estudio de adopción BIM en Proyectos de Edificación, Lima”. 2023

En lo que respecta a los software que se han utilizado mayormente para llevar a cabo estas actividades, se destacan Revit, utilizado para la elaboración de diseños y documentación técnica. En segundo lugar, se encuentra Navisworks, una herramienta que permite la integración de modelos de diferentes especialidades, simulaciones y la detección de interferencias. En tercer lugar, se sitúa la Nube de Autodesk Construction Cloud, que posibilita la colaboración entre especialidades y el intercambio de información en tiempo real. Por último, con un uso menos frecuente, se encuentran Tekla, ArchiCAD y Revizto.

Gráfico 4. Softwares Utilizados en Proyectos 

Nota: La gráfica muestra los softwares más utilizados. Fuente: “Tercer estudio de adopción BIM en Proyectos de Edificación, Lima”. 2023

En los cursos que se presentan a continuación, pertenecientes a la plataforma de Konstruedu, se podrá profundizar más acerca de los software más empleados en los proyectos de construcción.

Imagen. 1 Cursos de softwares


Nota: La imagen muestra algunos de los cursos disponibles en Konstruedu.com . Fuente: Konstruedu.com

Motivos por los cuales se ha ralentizado la adopción BIM 

La razón principal para no implementar esta metodología radica en la falta de demanda por parte de los clientes, quienes no perciben un valor añadido en su uso. Esto puede deberse a la falta de conocimiento acerca de los beneficios que ofrece o a la resistencia a adoptar una metodología que aún es relativamente joven en Latinoamérica. 

Las empresas reconocen los beneficios de usar BIM, pero al no contar con un incentivo por parte del cliente y carecer de un marco normativo que regule y estructure la forma en la que debe aplicarse, optan por implementar el uso de herramientas pertenecientes a esta metodología de forma aislada. Suelen enfocarse principalmente en aquellas que se utilizan mayormente en las etapas de diseño y construcción, sin considerar todo el ciclo de vida del proyecto. Esto a menudo resulta en que no logran gestionar un ecosistema completo, lo que, a su vez, retrasa la adopción total de BIM.

En la actualidad, la falta de estandarización de esta metodología representa un obstáculo. No obstante, como parte del Plan BIM Perú, se tiene previsto que para el año 2025 se apruebe un marco regulatorio para la implementación de BIM y su integración con los sistemas administrativos del Estado.

Conclusiones 

La implementación de la metodología BIM en Perú enfrenta desafíos relacionados con el tamaño de las empresas, la etapa de construcción, la falta de comprensión de sus beneficios y la necesidad de estandarización. Para superar estos obstáculos, el Estado peruano desempeña un papel importante a través del Plan BIM Perú, que busca establecer un marco regulatorio y promover la adopción de BIM en el país. Esto es esencial para aprovechar al máximo las ventajas que ofrece BIM en la industria de la construcción en Perú.

Referencias Bibliográficas

PUCP, Departamento Académico de ingeniería . (2023). Tercer estudio de adopción BIM en proyectos de edificación en Lima  – CAF. https://repositorio.pucp.edu.pe/index/handle/123456789/195846

Banco de Desarrollo de América Latina . (2023). Panorama general en el avance de BIM en America Latina y el Caribe -. .https://scioteca.caf.com/bitstream/handle/123456789/2022/Panorama%20General%20del%20Avance%20de%20BIM%20en%20Ame%CC%81rica%20Latina%20y%20el%20Caribe.pdf?isAllowed=y&sequence=1

CIBIM. (2023). BIM en el Mundo Perú  -.  https://cibim.mitma.es/bim-en-el-mundo/peru

________

Escrito por Axel David López Flores  para KONSTRUEDU.COM